На правах рукописи

Вдовин Юрий Сергеевич

ЦЕНТРОБЕЖНАЯ СВС-МЕТАЛЛУРГИЯ СПЛАВОВ НА ОСНОВЕ Mo-Si-B

Специальность 1.3.17 – Химическая физика, горение и взрыв, физика экстремальных состояний вещества

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

Черноголовка – 2022

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук (ИСМАН)

Научный руководитель	Юхвид Владимир Исаакович доктор технических наук, профессор, главный научный сотрудник, заведующий лабораторией ИСМАН
Официальные оппоненты	Амосов Александр Петрович доктор физико-математических наук, профессор, заведующий кафедрой металловедения, порошковой металлургии, наноматериалы, Федеральное государственное бюджетное образовательное учреждение высшего образования Самарский государственный технический университет, г. Самара
	Тереза Анатолий Михайлович кандидат физико-математических наук, старший научный сотрудник лаборатории гетерогенного горения, Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук, г. Москва
Ведущая организация	Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС», г. Москва

Защита диссертации состоится <u>« 15 » февраля 2023 года в 10.00</u> на заседании диссертационного совета 24.1.124.01 созданного на базе Федерального государственного бюджетного учреждения науки Институте структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук (ИСМАН), по адресу: 142432, Московская обл., г. Черноголовка, ул. Академика Осипьяна, д.8.

С диссертацией можно ознакомиться в библиотеке ИСМАН и на сайте: http://www.ism.ac.ru/n_struct/dsc/annonces/Vdovin.pdf

Отзывы на автореферат диссертации (в двух экземплярах, заверенных печатью организации) просьба направлять по адресу: 142432, Московская обл., г. Черноголовка, ул. Академика Осипьяна, д.8, ИСМАН, Диссертационный совет 24.1.124.01.

Автореферат разослан «____» ____ 202 г.

Ученый секретарь диссертационного совета к.т.н.

from

Петров Е.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

В настоящее время сплавы на основе молибдена с добавками Si и B рассматривают в качестве перспективных материалов в проблеме создания газотурбинных двигателей нового поколения с высокой рабочей температурой. В исследованиях Берчика Д.М. и др. (США, 1997 г.) была разработана методика получения жаропрочных сплавов, в которой при нагреве элементной смеси из Mo, Si и B и последующем быстром охлаждении формируется микроструктура, включающая матрицу из твёрдого раствора, в которой распределены включения Mo₃Si и/или Mo₅SiB₂. Совместное введение кремния и бора в молибден позволяет сформировать плотное боросиликатное стекло, защитить сплав от окисления и сохранить его прочность при высокой температуре.

В исследованиях, проведённых Е.А. Левашовым с коллегами (Россия, 2014 г.), использованы возможности получения сплавов Мо-Si-В из элементных смесей в режиме горения (методом Самораспространяющегося высокотемпературного синтеза). В работе исследованы закономерности влияния начальной температуры СВС процесса и состава исходных реакционных смесей на макрокинетические характеристики процесса горения, стадийности химических превращений и механизмы взаимодействия компонентов в системах Mo-Si-B и Cr-Al-Si-B. Показано, что движущей силой CBC в смесях Мо-Si-В является образование расплава Si и растекание его по поверхности частиц Мо с одновременным химическим взаимодействием, приводящим к появлению промежуточного слоя Мо₃Si. Далее по механизму реакционной диффузии через слой Мо₃Si идёт дальнейшее взаимодействие молибдена с расплавом с образованием из расплава зёрен фазы MoSi₂. В составах Mo-Si-B, обогащенных Si, взаимодействие Мо и В протекает через расплав кремния, а в составах, богатых В и бедных Si, взаимодействие Мо и В протекает посредством газофазного переноса летучих оксидов MoO₃ и В2О2 к частицам бора и молибдена соответственно. В системе Mo-Si-В реакции образования силицида и борида молибдена могут протекать параллельно и последовательно, чем обусловлен переход горения из режима слияния в режим отрыва и наоборот. В режиме отрыва ведущей является реакция образования MoSi₂, а через небольшой временной промежуток следует образование МоВ. По технологии силового СВС-компактирования получены керамические материалы в тройной системе Mo-Si-B, в том числе на основе Mo₅SiB₂ (T2-фазы) с содержанием близким к 100%.

В рамках проекта "ULTMAT", с участием учёных из Японии, США, Германии, Франции, Австрии и др., проведены исследования, направленные на получение широкого круга жаропрочных сплавов, включая сплавы Mo-Si-B-Nb. Для получения компактных образцов была использована методика, включающая механоактивацию в вертикальном аттриторе в течение 10 часов до полного растворения Nb, Si и B в Mo, термическую гомогенизацию состава, изостатическое холодное прессованию и спекание в атмосфере H₂ при 1450° C. На завершающей стадии методом горячего изостатического прессования при 1500° C под давлением 200 МПа получают заготовки диаметром 50 мм и длиной 200 мм. Было показано, что в сплаве Mo-92,5, Si-3,0, B-1,1, Nb-3,4 % вес. формируются Мо-раствор и фазы с решётками Mo₃Si и Mo₅SiB₂ (T2 фаза).

В работах S. Yamamoto с соавторами (Япония, 2016 г.) был разработан сплав MoSiBTiC путем добавления TiC в сплавы Mo-Si-B. Для получения сплавов использовали смеси Mo, Si, B, Ti и C. Методика получения сплавов, включает получение слитков стержневидной формы диаметром около 10 мм дуговым плавлением в атмосфере аргона и термообработку слитков при 2073 К (1800° С) в течение 24 часов в атмосфере аргона для гомогенизации. Сплав MoSiBTiC состоит из четырёх составляющих фаз, таких как твёрдый раствор молибдена (Mo)p, Mo₅SiB₂, (Ti,Mo)C и

(Mo,Ti)₂C. Отмечено, что микроструктура сплава меняется, если меняется состав. При добавлении титана концентрация в составных фазах увеличивалась, а концентрация молибдена не уменьшалась. Плотность уменьшалась примерно с 8,78 до 8,43 г/см3, поскольку объёмная доля фазы (Ti, Mo)C с относительно низкой плотностью увеличилась. Твёрдость, модуль Юнга и модуль сдвига практически не изменились при добавлении Ti, несмотря на уменьшение плотности.

В исследованиях Alan A. Esparza и Evgeny Shafirovich (США, 2016 г.) для получения жаропрочных материалов использовали экзотермические смеси Mo-Si-B+x(Ti-C) и Mo-Si-B+x(Ti-B), способные к горению. После воспламенения в смесях Mo/Si/B/Ti наблюдалось самоподдерживающееся распространение волны горения, но продукты были пористыми, содержали нежелательные вторичные фазы и имели низкую стойкость к окислению. Использование «химической печи» успешно применялось для изготовления более плотных и более прочных материалов Mo₅SiB₂-TiC, Mo₅SiB₂-TiB₂ и Mo-Mo₅SiB₂-Mo₃Si. Материал Mo₅SiB₂-TiB₂ проявляет наилучшую стойкость к окислению при температурах до 1500° С.

В работах Юхвида В.И. с коллегами (Россия, 2005-2018 г.) были проведены исследования закономерностей и механизмов СВС-металлургии и показана перспектива синтеза литых сплавов, близких по составу к жаропрочным промышленным сплавам ХТН-61, 4822, ЖС6У, а также сплавов на основе Nb. В СВС-металлургии для синтеза литых тугоплавких неорганических материалов используют высокоэкзотермические смеси оксидов металлов с активными восстановителями и неметаллами (смеси термитного типа). Превращения исходной смеси в конечные продукты представляет собой сочетание восстановительных реакций, протекающих во внепечной металлургии (металлотермии) и элементном СВС, поэтому этот вариант синтеза получил название СВС-металлургия. Температура горения смесей может превышать температуру плавления конечных продуктов, что позволяет получать их в литом виде.

В представленной диссертационной работе впервые поставлена задача, направленная на получении литых сплавов на основе Mo-Si-B методом центробежной CBC-металлургии.

Актуальность темы исследований подтверждается её выполнением по Государственному заданию ИСМАН научно-исследовательской работы 2018-2021 "Разработка научных основ высокоэффективных технологий получения консолидированных материалов методами горения под силовым воздействием", а также выполнением при финансовой поддержке Российского фонда фундаментальных исследований проекта "Высокотемпературный синтез литых композиционных материалов на основе силицидов молибдена" (проект 18-08-00228).

Цель и задачи работы

Цель работы: провести исследования и разработать научные основы получения литых сплавов на основе Mo-Si-B с легирующими и модифицирующими добавками из смесей термитного типа методами центробежной СВС-металлургии.

В соответствии с поставленной целью было необходимо решить ряд научно-технических задач, а именно:

1. Исследовать влияние перегрузки и состава смесей на пределы и скорость горения смесей, потерю массы исходных смесей при горении, пределы и полноту сепарации целевого продукта и шлака;

2. Исследовать влияния перегрузки и состава смесей на химический состав литых сплавов, формирование фазового состава, макро- и микроструктуры литых сплавов;

3. Определить оптимальные режимы синтеза литых сплавов на основе Mo-Si-B, легированных Nb, Ti, C и Al, из смесей MoO₃/Al/Si/B с добавками Nb₂O₅, Ti и C под воздействием перегрузки;

4

4. Осуществить центробежную СВС-наплавку сплава Мо-Si-В на титановые основы и определить оптимальные режимы СВС-наплавки;

5. Установить влияние масштабного фактора на закономерности синтеза, составы и структуру литых сплавов при увеличении массы смеси.

Объекты исследования

В качестве объектов исследования выбраны высокоэкзотермические смеси на основе оксида молибдена ($MoO_3/Al/Si/B$, $MoO_3/Nb_2O_5/Al/Si/B$; $MoO_3/Al/Si/B/Ti/C$ и др.) и продукты их синтеза (Mo-Si-B, Mo-Nb-Si-B, Mo-Si-B-Ti-C, а также слоевые материалы (MoSiB/Ti, MoNiSiB/Ti).

Научная новизна

1. Впервые изучены закономерности центробежной СВС-металлургии сплавов на основе Mo-Si-B из смесей термитного типа, установлены пределы горения смесей и оптимальные области получения литых сплавов, показано влияние состава исходных смесей и величины перегрузки на состав и структуру литых сплавов. Разработана новая методика видеосъёмки процесса горения смесей термитного типа, протекающего в центробежной установке при установившемся вращении под воздействием перегрузки.

2. Установлено, что горение смесей MoO₃/Al/Si/B и MoO₃/Nb₂O₅/Al/Si/B в атмосферных условиях сопровождается интенсивным разбросом продуктов горения, причиной которого является выделение газа из продуктов горения. Потеря массы достигает 50-90% вес. Введение в смесь MoO₃/Al/Si/B и MoO₃/Nb₂O₅/Al/Si/B элементных составов Mo/Si/B и Mo/Si/B/Nb, а также проведение горения под воздействием перегрузки (a/g) позволяет подавить разброс и получить литые сплавы с массой и химическим составом, близкими к расчётным значениям. Аналогичные результаты были получены при исследовании горения смесей MoO₃/Al/Si/B/Ti/C И MoO₃/Al/Si/B/TiC.

3. По результатам экспериментов определены оптимальные по выходу целевого продукта в слиток область параметров: α=10-40% и а≥40g сплавов Mo-Si-B и Mo-Nb-Si-B. Литые сплавы имеют близкие к расчетным значениям химический состав. По данным рентгенофазового анализа Mo-Si-B, содержит 3 фазы: (Mo)_p, Mo₃Si, Mo₅SiB₂. При введении в состав сплава ниобия, новых фаз не образуется поскольку Nb растворяется в фазах (Mo)_p, Mo₅SiB₂ и Mo₅SiB₂ и Mo₃Si.

4. Для смесей MoO₃/NiO/Al/C+ α (Ti+C) и MoO₃/NiO/Al/C+ α (TiC) оптимальные для выхода в слиток интервалы совпадают a=5-20% вес., a≥100g. Установлено, что в оптимальных интервалах способ вид добавки, TiC или Ti+C, слабо влияет на химический состав сплавов. При α = 10% вес., в состав литого сплава переходит 9-13 % Ti и 2,3-24% C, 33-36% Mo, 28-29% Ni, 9,5-10% Al. Независимо от вида добавки в сплаве формируется фаза с участием Ti - фаза MoTiC₂, а также фазы (Mo)_p и NiAl. Из анализа карт распределения элементов и результатов рентгенофазового анализа следует, что Mo, Ti и C локализованы в мелких зёрнах с фазовым составом MoTiC₂, распределённых в матрице из NiAl. Также, в сплаве формируются более крупные зёрна из раствора C в Mo.

5. Реализована центробежная CBC-наплавка сплава Mo-Si-B на титановые основы. Было установлено, что в наплавленном образце формируются 3 зоны: 1-собственно покрытие, 2переходная зона и 3-слой титановая основа, толщина которой уменьшилась при наплавке. В зоне 1, элементы входящие в состав покрытия Mo, Si, B, Ti и Ni, равномерно распределены по высоте. В зоне 2 концентрации Mo, Si, B, Ti и Ni уменьшаются до 0, а концентрация Ti возрастает до 100 %. Увеличение перегрузки, приводит к заметному изменению геометрии и толщины наплавленного слоя, а также его химического состава. Так с ростом перегрузки от 40g до 100g зона 1 наплавленного слоя возрастает от 4 мм до 6 мм, а содержание титана в нём возрастает от 20% до 30%. 6. Разработана новая экспериментальная методика определения прочности соединения наплавленного слоя Mo-Si-B с титановой основой и изготовлена экспериментальная оснастка. Эксперименты на отрыв наплавленного слоя от титановой основы показали, что предел прочности составляет 100 МПа.

Практическая значимость

1. Апробирована методика и установка для измерения прочности соединения наплавленного слоя Mo-Si-B с титановой основой.

2. Разработан способ изготовления жаропрочных сплавов на основе молибдена (патент РФ № 2776265 от 20.04.2021) при использовании центробежной СВС-металлургии в литейных периклазовых тиглях и стальных формах с набивной футеровкой из корунда для получения крупных слитков (до 1,5 кг) составов Mo-Si-B и Mo-Nb-Si-B. Увеличение массы смесей MoO₃/Al/Si/B/Al₂O₃ и MoO₃/Nb₂O₅/Al/Si/B/Al₂O₃ до 2,5 кг приводит к существенному увеличению выхода целевого продукта в слиток без изменения состава и структуры литых сплавов.

3. Сплавы в системах Mo-Si-B, Mo-Nb-Si-B, Mo-Si-B-Ti-C и способ их получения имеют перспективу промышленного освоения в интересах авиационного двигателестроения для производства лопаток газотурбинных двигателей с повышенными тактико-техническими характеристиками.

Положения, выносимые на защиту

1. Разработка методических подходов для получения литых сплавов Mo-Si-B, Mo-Nb-Si-B, Mo-Si-B-Ti-C;

2. Определение влияния перегрузки и состава на пределы и скорость горения смесей, потерю массы исходных смесей при горении, пределы и полноту сепарации целевого продукта и шлака;

3. Результаты анализа формирования химического состава сплавов, формирующихся в процессе центробежной СВС-металлургии;

4. Результаты анализа микроструктуры и фазового состава продуктов синтеза в литых сплавах Mo-Si-B, Mo-Nb-Si-B, Mo-Si-B-Ti-C, формирующихся в процессе центробежной CBC-металлургии;

5. Результаты по определению оптимальных областей получения литых сплавов Mo-Si-B, Mo-Nb-Si-B, Mo-Si-B-Ti-C по величине перегрузки и соотношению высокотемпературных (MoO₃/Al/Si/B, MoO₃/Nb₂O₅/Al/Si/B, MoO₃/Al/Si/B/Ti/C) и низкотемпературных (Mo/Si/B, Mo/Nb/Si/B, Ti/C) составов и/или инертной добавки (Al₂O₃);

6. Разработка центробежной СВС-наплавки Мо-Si-В на титановые основы и результаты анализа особенностей формирования литого покрытия;

7. Результаты анализа по влиянию масштабного фактора на формирование состава и структуры литых сплавов Mo-Si-B и Mo-Nb-Si-B.

Соответствие содержания диссертации паспорту специальности, по которой она рекомендуется к защите

Диссертационная работа Вдовина Ю.С. «Центробежная СВС-металлургия сплавов на основе Mo-Si-B" соответствует паспорту научной специальности: 1.3.17 – «Химическая физика, горение и взрыв, физика экстремальных состояний вещества»;

- формуле паспорта диссертации, так как в диссертации рассматриваются материалообразующие процессы горения – Самораспространяющийся высокотемпературный синтез в сочетании с центробежным воздействием на продукты горения, а также на процессы структуро- и фазообразования сплавов, обладающих уникальными свойствами и представляющих практическую ценность;

- областям исследования паспорта специальности, в частности: пункту 1 «Поведение веществ и структурно-фазовые переходы в экстремальных условиях – в гравитационных полях»; пункту 2 «Экспериментальные методы исследования химической динамики»; пункту 4 «Закономерности и механизмы распространения, структура, параметры и устойчивость волн горения...; связь химической и физической природы веществ и систем с их термохимическими параметрами, характеристиками термического разложения, горения...; макрокинетика процессов горения и взрывчатого превращения»; пункту 5 «Процессы горения в устройствах и аппаратах для получения веществ и продуктов; управление процессами горения».

Апробация работы

Основные результаты и положения диссертации докладывались и обсуждались на следующих научных конференциях: II Международная конференция «Физика конденсированных состояний», посвящённая 90-летию со дня рождения академика Ю.А. Осипьяна (1931-2008), Россия, Черноголовка, 2021 г.; 4-ая международная конференции Современные технологии и методы неорганических материалов, Институт металлургии и материаловедения Фердинанда Тавадзе, Грузия, Тбилиси, 2021; XV Всероссийский симпозиум по горению и взрыву, Россия, Москва, 2020 г.; XXVII Международный молодежный научный форум «ЛОМОНОСОВ-2020», Россия, Москва, 2020 г.; XV International Symposium on Self-Propagating High-Temperature Synthesis, Россия, Москва, 2019 г.; XIV International Symposium on Explosive Production of New Materials: Science, Technology, Business, and Innovations (EPNM-2018), Россия, Санкт-Петербург, 2018 г.; Международная конференция "Синтез и консолидация порошковых материалов" (SCPM-2018), Россия, Черноголовка, 2018 г.; Ежегодная научная конференция ИСМАН, Россия, Черноголовка, 2018 г.; Сивероссия и консолидация порошковых материалов" (SCPM-2018), Россия, 4018 г.; Сивероссия, 4018 г.; Ежегодная научная конференция ИСМАН, Россия, Черноголовка, 2018 г.; Китероссия консолидация порошковых материалов.

Публикации по теме диссертации

По теме диссертационной работы опубликовано 17 печатных работ, в том числе 7 статей в реферируемых научных журналах, входящих в Перечень ВАК, базы данных Web of Science и Scopus, 10 тезисов в сборниках трудов на перечисленных выше конференциях, получен 1 патент РФ.

Личный вклад

В диссертации представлены результаты исследования, полученные автором самостоятельно. Автору принадлежит: анализ литературных источников; участие в постановке задач исследования; разработка методик и проведение экспериментальных исследований; обработка полученных результатов и их обобщение; выработка практических рекомендаций.

Достоверность и обоснованность работы обеспечивалась комплексом теоретических и расчётно-аналитических исследований, который базируется на общих принципах фундаментальной научных основах прогрессивной науки И техники И технологии. Экспериментальные исследования проводились с использованием современного оборудования и аттестованных методик исследований, сопоставлением полученных результатов с результатами других исследователей.

Структура и объем диссертации состоит из введения, 7 глав, выводов, списка литературы из 155 наименований. Диссертация изложена на 139 страницах машинописного текста и содержит 100 рисунков и 33 таблицы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Введение. Во введении обоснована актуальность диссертационной работы.

Первая глава содержит аналитический обзор публикаций, соответствующих теме диссертации. Основное внимание в обзоре уделено одному из важных направлений исследований,

направленных на получение тугоплавких материалов и керамики, получившего название центробежная CBC-металлургия, а также созданию новых жаропрочных сплавов нового поколения. В настоящее время сплавы на основе молибдена с добавками Si и B рассматривают в качестве перспективных жаропрочных материалов для создания газотурбинных двигателей нового поколения с высокой рабочей температурой. Основными методами получения сплавов на основе молибдена с добавками Si и B являются литьё, технология направленной кристаллизации, порошковая металлургия. Перспективу для получения литых сплавов на основе Mo-Si-B имеет центробежная CBC-металлургия.

Во второй главе дано описание используемых исходных материалов, центробежных установок и методик исследования.

Центробежные установки разделяются на лабораторные и опытно- технологические. Лабораторные установки предназначены для сжигания малых масс шихты (20-50 г) с целью исследования закономерностей и механизма СВС-процесса, а также получения небольших образцов для анализа химического и фазового составов, структуры и состава структурных составляющих. Опытно-технологическая установка, предназначена для сжигания больших масс шихты (0,5-5 кг) с целью наработки опытных партий материалов, а также для исследования влияния масштабного фактора на процесс, состав и структуру продуктов синтеза.

В экспериментах определяли линейную скорость горения (u), относительную потерю массы при горении (η_1) и полноту выхода целевых элементов в слиток (η_2). Характеристики рассчитывали по формулам: u = h/t_r, $\eta_1 = [(m_1-m_2)/m_1] \cdot 100\%$, $\eta_2 = (m/m_p) \cdot 100\%$, где h – высота слоя исходной смеси, t_r – время горения слоя, m₁ и m₂ – массы исходной смеси и продуктов горения, m и m_p – экспериментальная и расчётная массы слитка.

Для определения химического состава и структуры продуктов синтеза использовали автоэмиссионный сканирующий электронный микроскоп Carl Zeiss Ultra plus на базе Ultra 55. Фазовый состав конечных продуктов горения определяли на рентгеновском дифрактометре ДРОН-3М, в качестве источника излучения использовалась рентгеновская трубка типа БСВ–27 с медным анодом (λ =1,54178 Å). Содержание легких элементов (бора, углерода и алюминия) определяли методами аналитической химии.

В третьей главе приведены результаты исследований центробежной CBC-металлургии литого сплава Mo-Si-B. Для проведения исследований использовали смеси, включающие высокоэкзотермический (MoO₃/Al/Si/B) и низкоэкзотермический (Mo/Si/B) составы, таблица 1.

Исходные составы, вес. %	MoO ₃	Al	Si	В	Мо
<u>№</u> 1	71,6	26,5	1,4	0,5	-
<u>№</u> 2	-	-	2,8	1,0	96,2

Таблица 1 - Содержание компонентов в составах №1 и №2

Из расчётов в программе "Термо" следует, что с ростом доли состава №2 от нуля до 100% вес. расчётная адиабатическая температура горения понижается от 3800 К до 1200 К. При температуре горения выше 3000 К, конденсированные продукты горения, сплав (Mo-Si-B) и шлак (Al₂O₃) находятся в жидкофазном состоянии. В расчётном составе продуктов горения присутствуют до 10 % вес. газов, пары металлов (Al и Mo) и субоксидов (Al₂O, Al₂O, Al₂O₂, MoO, MoO₂, BO, SiO). В экспериментах, горение смесей термитного типа с высоким уровнем газообразования сопровождается интенсивным разбросом смеси, поэтому с целью подавления разброса в экспериментах применяют центробежные установки, воздействуя перегрузкой.

Эксперименты проводили в атмосферных условиях и в центробежной установке под воздействием перегрузки в интервале 1-400g. Смеси массой 20 г сжигали в прозрачных кварцевых

стаканчиках диаметром 18-25 мм, высотой 70 мм. По результатам видеосъёмки было установлено, что после воспламенения по смеси распространяется фронт горения. Фронт горения практически плоский. Горение смеси MoO₃/Al/Si/B в атмосферных условиях сопровождается интенсивным разбросом продуктов горения. Введение в смесь элементного (Mo/Si/B) состава и воздействие перегрузкой подавляют разброс. С увеличением перегрузки скорость горения возрастает.

Установлено, что при вариации (α) от 0 до 40% вес. и перегрузки (a/g) от 1 до 400 продукты горения формируются в виде двухслойного слитка: нижний слой Mo-Si-B (целевой продукт) и верхний слой Al₂O₃ (шлаковый продукт).

В основной части исследований были проведены две серии экспериментов. В первой серии экспериментов в исходной смеси при заданной величине перегрузки варьировали соотношение масс (α) высокоэкзотермического (MoO₃/Al/Si/B) и низкоэкзотермического (Mo/Si/B) составов. Во второй серии экспериментов для состава, выбранного по результатам первой серии, изучено влияние перегрузки (a/g).

Из результатов экспериментов следует, что и и η_1 уменьшаются, а η_2 возрастает при увеличении α от 0 до 40% вес., рисунок 1, и достигает 70 % от расчётного значения.

При $\alpha > 60\%$ полнота выхода целевого продукта в слиток резко снижается и при $\alpha = 70\%$ достигает нуля (достигается предел сепарации целевого и шлакового расплавов). При $\alpha = 80\%$ достигается предел горения. С ростом перегрузки скорость горения и полнота выхода сплава в слиток вначале возрастают, а потом выходят на насыщение, рисунок 2. Напротив, потеря массы с ростом перегрузки вначале падает, а затем выходит на насыщение. На рисунках 1 и 2 отмечены серым цветом области высокого выхода сплава в слиток и заштрихована область, где горение невозможно.

Из рисунков 1 и 2 следует, что оптимальными интервалами для получения литого Mo-Si-B являются интервалы: α=10-40% вес. и а/g ≥ 40. Продукты горения смеси, полученные в этих условиях, представляют собой слиток, чётко разделенный на 2 слоя.

Влияние соотношения составов №1 и №2 (α) и перегрузки (a/g) на химический состав литых сплавов представлено на рисунках 3 и 4.

С увеличением α от 0 до 40% содержание Мо возрастает, а содержание Si и примесей Al и О уменьшается в литом сплаве, рисунок 3. Содержание бора в литом сплаве Mo-Si-B дополнительно определяли методом потенциометрического титрования маннитборной кислотой. Согласно анализу, интегральное содержание бора в литом сплаве Mo-Si-B составляет 0,8-1,0% вес. С увеличением a/g от 1 до 400 химический состав сплава Mo-Si-B изменяется слабо, рисунок 4. Содержание Мо в сплаве составляет ~91-92%, кремния ~3%, Al ~2% и O ~2%, а содержание бора в литом сплаве Mo-Si-B составляет 0,8-1,0%, вес.

На рисунке 5 представлена микроструктура сплава и СЭМ-анализ его структурных составляющих, таблица 2. Установлено, что твёрдый раствор молибдена (Mo, Al, Si)p – зоны (1) светлого цвета окружены пограничными областями, включающими (Mo, Al)₃Si и (Mo, Al)₅SiB₂ - зоны (2) и (3) серого и тёмного цвета соответственно.

По данным рентгенофазового анализа, литой сплав Mo-Si-B, содержит 3 фазы – Mo_p, Mo₃Si и Mo₅SiB₂, рисунок 6.

Рисунок 5 - Микроструктура сплава Mo-Si-B, M=20 г, α=30%, а=400g

	15 51			,
N⁰	Мо	Si	Al	Фазы
1	96,5÷96,7	0,9÷1,0	1,2÷1,3	[Mo, Si, Al]p
2	91,4÷91,4	5,8÷5,9	1,6÷1,7	[Mo, Al] ₃ Si
3	92,7÷93,6	4,6÷4,7	0,6÷0,7	[Mo, Al] ₅ SiB ₂

Таблица 2 - Состав структурных элементов сплава Мо-Si-B, % вес.

В четвёртой главе представлены результаты исследований по введению Nb в состав Mo-Si-B. Расчётное содержание Nb в сплаве составляет 3,4% вес. Для проведения исследований использовали смеси, включающие две комбинации составов:

$$MoO_3/Al/Si/B/Nb_2O_5 + \alpha(Mo/Nb/Si/B) \rightarrow Mo-Nb-Si-B + Al_2O_3$$
(1)

$$MoO_3/Al/Si/B/Nb_2O_5 + \alpha(Al_2O_3) \rightarrow Mo-Nb-Si-B + Al_2O_3$$
 (2)

При введении малых добавок Nb₂O₅ с Al в высокоэкзотермический состав (1) и ниобия в состав (2), феноменология процесса получения Mo-Nb-Si-B аналогична изложенной в главе 3 при получении Mo-Si-B.

Часть 1. Для получения литых сплавов Mo-Nb-Si-B использовали комбинации составов №1 и №2, таблица 3. Соотношение целевых элементов (Mo, Nb, Si, B) в смеси №1 такое же, как и в смеси №2.

Было проведены 2 серии экспериментов. В 1-ой серии экспериментов в исходной смеси при перегрузке a=40 g варьировали соотношение масс (α) высокоэкзотермического (1) и низкоэкзотермического (2) составов. Во 2-ой серии экспериментов для состава, выбранного по результатам 1-ой серии, варьировали величину перегрузки (a/g).

ruomigu 5 Codepikamie komienemes b cocrabax 5/21 n 5/22 dim nony remin 1/10 5/ b									
Исходные составы,	Mo	Si	Nb	В	MoO ₃	Nb_2O_5	Al		
% Bec.									
№ 1	-	1,5	-	0,5	68,9	2,4	26,7		
<u>№</u> 2	92,5	3,0	3,4	1,1	-	-	-		

Таблица 3 - Содержание компонентов в составах №1 и №2 для получения Mo-Nb-Si-B

На рисунках 7 и 8 отмечена серым цветом область высокого выхода сплава в слиток и заштрихована область, где горение невозможно.

Из результатов экспериментов, следует, что в интервале α от 0 до 40% скорость горения и разброс смеси уменьшаются, а выход целевого продукта возрастает при увеличении (α), рисунок 7. В этом интервале выход целевого продукта достигает 80% от расчётного значения. Интервал α =10-40% является оптимальным для получения литого Mo-Nb-Si-B. Продукты горения смеси, полученные в этих условиях, представляют собой слиток, чётко разделенный на 2 слоя и выход сплава в слиток максимальный. С ростом перегрузки от 1 до 400g скорость горения и выход сплава в слиток возрастают, а потеря массы (η_1) уменьшается, рисунок 8. При a>40 g величины и, η_1 и η_2 выходят на насыщение.

При сопоставлении данных СЭМ и РФА, рисунки 9а и 9б, в составе литого сплава выявлены 3 фазы: твёрдый раствор Мо_р, Мо₃Si и Мо₅SiB₂.

Рисунок 9 - Микроструктура и фазовый состав сплава, a=100 g, α=20%, M=40 г

N⁰	Мо	Nb	Si	Al	Фазы
1	92,7÷93	1,1÷1,4	1,1÷1,3	1,0÷1,3	[Mo, Nb, Si, Al]p
2	87,5÷88	1,8÷2,0	5,4÷5,4	1,9÷2,0	[Mo, Nb, Al] ₃ Si
3	87,5÷88	3,4÷3,4	5,3÷5,3	0,4÷0,5	[Mo, Nb, Al] ₅ SiB ₂

Таблица 4 – Состав структурных составляющих сплава Mo-Nb-Si-B, % вес.

В таблице 4 представлены результаты СЭМ, из которого следует, что в фазах, установленных РФА, растворены Nb и Al.

Часть 2. Во второй части главы для получения сплава Mo-Nb-Si-B была использована смесь MoO₃/Al/Si/B/Nb₂O₅ + α(Al₂O₃). Это позволяет исключить использование более дорогих и дефицитных Мо и Nb, хотя и уменьшает долю целевого продукта в и увеличивает долю шлаковой фазы. В данном разделе основное внимание уделено влиянию весовой доли разбавителя на выход целевого продукта в слиток и формирование состава и структуры сплава Mo-Nb-Si-B.

Введение в смесь Al₂O₃ и воздействие перегрузкой подавляют разброс, продукты горения формируются в виде двухслойного слитка: нижний слой Mo-Nb-Si-B (целевой продукт) и верхний слой Al₂O₃ (шлаковый продукт). Следует отметить, что масса сплава при разбавлении корундом уменьшается.

 $\alpha(Al_2O_3)=20\%$ Bec., M=40 r

Оптимальными параметрами для получения сплава при разбавлении смеси корундом являются α=10-25% вес. и а>40g, рисунок 10. Предел горения достигается при разбавлении α=50% вес.

С ростом перегрузки от 40g до 400g потеря массы при горении (η_1) монотонно уменьшается, а полнота выхода целевых элементов в слиток (η_2) возрастает. Следует отметить, что при α =10-25% вес. и a/g \geq 100 формируется безпористая структура сплава и чёткая граница между слоями сплава и шлака, рисунок 11.

На рисунке 12 показана микроструктура сплава Mo-Nb-Si-B с 3-мя структурными составляющими, отличающихся по цвету и составу: светлая основа (1), по границам областей чередуются светло-серые (2) и тёмно-серые участки (3). По данным рентгенофазового анализа, сплав содержит 3 фазы: твёрдый раствор молибдена - Мо_р, Mo₃Si, Mo₅SiB₂, рисунок 13. Из сопоставления микроструктуры, состава структурных составляющих, таблица 5, и рентгенограммы сплава, следует, что в фазах, установленных РФА, растворены Nb и Al.

Рисунок 12 - Микроструктура сплава, α(Al₂O₃)=20%, а=400g

Рисунок 13 - Фазовый состав сплава, α(Al₂O₃)=20%, а=400g

N⁰	Мо	Nb	Si	Al	Фазовый состав
1	95,8	0,9	0,8	1,4	[Mo, Nb, Si, Al]p
2	85,7	1,7	8,9	2,6	[Mo, Nb, Al] ₃ Si
3	87,6	5,5	5,3	0,5	[Mo, Nb, Al] ₅ SiB ₂

Таблица 5 - Структурные составляющие сплава Mo-Nb-Si-B, % вес.

В пятой главе представлены результаты по введению Ті и С в сплав Mo-Si-B. Для проведения исследований использовали смесь составов MoO₃/Al/Si/B и Ti/C, с добавкой 20% Al₂O₃, таблица 6. Масса смеси 50 грамм.

Составы, % вес.	MoO ₃	Al	Si	В	Ti	С
1	71,6	26,5	1,4	0,5	-	-
2	-	-	-	-	80	20

Таблица 6 - Соотношения компонент в составах (1) и (2) смеси

В экспериментах было установлено, что в атмосферных условиях горение смесей MoO₃/Al/Si/B/Ti/C при содержании (Ti+C)≤5,0% вес. сопровождается практически полным разбросом продуктов горения. Для подавления разброса в состав смеси дополнительно вводили 20% разбавителя (Al₂O₃) и воздействовали перегрузкой 100g.

Было показано, что с ростом α (Ti+C) до 5% вес. разброс продуктов горения (η_1) и выход сплава в слиток (η_2) изменяются незначительно, рисунок 14.

На рисунке 15, показано, что с ростом α (Ti+C) от 0 до 5% вес. в исходной смеси, содержание Мо уменьшается от 95% до 88% вес., Ті и С возрастает (Ті от 0 до 5%, С от 0 до 2% вес.), Si практически не меняется, содержание примесного Al проходит через максимум и составляет 4% вес.

По данным химического анализа методом потенциометрического титрования маннитборной кислотой содержание бора в сплаве Mo-Si-B-Ti-C составляет 0,9-1,1% вес. Следует отметить, что содержание Ti в сплаве меньше расчётного, что указывает на его участие в восстановлении MoO₃ на стадии горения.

Рисунок 16 - Микроструктура сплава, а=100g, α (Ti+C)=5% вес.

Рисунок 17 - Фазовый состав сплава, а=100g, α (Ti+C)=5% вес.

Таблица 7 - Структурные составляющие сплава Мо-Si-B-Ti-C, % вес.

N⁰	Содержание элементов	Фазовый состав
1	Si=3.0-3.1, Al=3.8-3.9, Ti=0.8-0.9, Мо-остальное	[Mo, Al, Si, Ti]p
2	Si=5.0-5.3, B=4.0-4.1, Ti=2.9-3.1, Al=0.6-0.7, Mo-oct.	[Mo, Al, Ti] ₅ SiB ₂
3	Ті=2.4–2.5, С=4.1–5.5, Sі=2.1–2.2, Аl=2.1–2.4, Мо-ост.	[Mo, Ti, Si, Al] ₂ C
4	Ti=21.0-23.0, C=10.0-12.0, Al=0.3-0.5, Мо-остальное	[Mo, Ti, Al]C

Анализ микроструктуры сплава Mo-Si-B-Ti-C выявил 4 структурных элемента, отличающихся по составу, рисунок 16. По данным РФА, сплав содержит 4 фазы: Mo_p, Mo₅SiB₂, Mo₂C и MoC, рисунок 17. Из сопоставления интенсивности пиков на рентгенограмме, состава структурных элементов, таблица 7, и микроструктуры можно сделать вывод, что в фазах, установленных РФА, растворены Ti и Al, а третья и четвёртая фазы представляют собой карбиды молибдена Mo₂C и MoC.

В шестой главе исследовали закономерности центробежной СВС-наплавки сплавов на основе Mo-Si-B на титановый сплав ВТ1-0, формирования состава и структуры наплавленного слоя. Для осуществления наплавки сплавов использовали 2 схемы, однослойную и двухслойную, рисунок 18 а, б.

Рисунок 18 - Схемы однослойной и двухслойной наплавки

Составы смесей (1) и (2) представлены в таблице 8. Обе смеси имеют высокую температуру горения, превышающую температуру плавления своих конечных продуктов горения Mo-Si-B, Ni, Al₂O₃, Al₂O₃-CaO, а также титана.

Для реализации центробежной CBC-наплавки смеси и титановые образцы диаметром 39 мм и толщиной 10 мм помещали в графитовый стаканчик с внутренним диаметром 40 мм и высотой 150 мм. Воспламенение и сжигание смеси проводили в режиме установившегося вращения на центробежной установке. Соотношение масс слоёв варьировали от M1/M2=100/0 г до M1/M2=0/100 г. Величину перегрузки варьировали от 40 до 500 g. Осмотр образцов показал, что при перегрузке больше 40 g и суммарной массе смеси более 80 грамм на поверхности титанового образца.

N⁰	Смеси	Содержание компонентов в смесях, % вес.						
		MoO ₃	NiO	CaO ₂	Al	Si	В	Al_2O_3
1	MoO ₃ /Al/Si/B/Al ₂ O ₃	62,7	-	-	23,2	1.2	0,4	12,5
2	NiO/CaO ₂ /Al	-	54,6	24,0	19,6	-	-	-

Таблица 8 - Составы исходных смесей

На разрезанных образцах после шлифовки и травления азотной кислотой, рисунки 19 и 20, была обнаружена граница между наплавленным слоем и титановой основой. M_1/M_2 – соотношение масс 1 и 2 слоя.

Рисунок 19 - Однослойная наплавка, $M_{\rm l}/M_{\rm 2}{=}100/0$ г, а=100g

Рисунок 20 - Двухслойная наплавка, М₁/М₂=50/50 г, а=100g

На СЭМ изображении наплавленного образца выявлены 3 зоны: покрытие, переходная зона и титановая основа, рисунок 21. Послойный анализ СЭМ состава и структуры наплавленных образцов проводили по всей высоте, рисунок 22.

Рисунок 21 - СЭМ изображение наплавленного образца

Рисунок 22 - Схема послойного анализа по высоте образца

На рисунке 23 представлены распределения элементов по высоте, наплавленных на титан образцов. Из анализа распределений, следует, что содержание Мо, Ті и Al, а также Ni для двухслойной наплавки, постоянно в пределах покрытия. Для однослойной наплавки содержание титана в покрытии составляет 3-4% вес., а для двухслойной наплавки 18-19% вес. В переходной зоне, шириной 1 мм, содержание Мо и Ni падает до 0, а титана - возрастает до 100%. Согласно результатам, полученным методами аналитической химии, в покрытие содержится Si≈1,5-2,0% вес. и В≈0,5-0,7% вес. Следует отметить, что титановая основа является единственным источником титана в покрытии.

Рисунок 23 - Распределение элементов по высоте наплавленного образца, полученного при однослойной (а) и двухслойной (б) наплавках

Формирование фазового состава, микроструктуры и состава структурных составляющих при однослойной и двухслойной наплавках.

Из анализа микроструктуры следует, что при наплавлении однослойной смесью формируется трёхфазная структура, включающая светлые участки (1), распределённые в светлосерой матрице (2) с тёмно-серыми участками (3), рисунок 24. Из рентгенофазового анализа установлено, что в состав покрытия входят 3 фазы: Mo₃₀Al_{7,7}Si_{2,3}, твёрдый раствор Мо и Mo₅SiB₂, рисунок 25. Локальный анализ структурных элементов наплавленных образцов выявил, что в обнаруженных фазах, растворены Ті и Al, таблица 9.

Рисунок 24 - Микроструктура однослойной наплавки Mo-Si-B

Рисунок 25 - Фазовый состав однослойной наплавки Mo-Si-B

Таблица 9 - Состав структурных элементов для однослойной наплавки, % вес.

	1				
N⁰	Mo	Ti	Si	Al	Фазы
1	OCT.	2-3	0,5-1	2,4-2,5	[Mo, Ti] ₃₀ Al _{7,7} Si _{2,3}
2	OCT.	6,0-6,2	2,5-2,6	3,5-4	[Mo, Ti, Al, Si]p
3	OCT.	6,0-6,5	3,7-4,0	0,5-1	[Mo, Ti, Al] ₅ SiB ₂

Для двухслойной наплавки масса верхнего и нижнего слоёв были одинаковы, M₁=50 г и M₂=50 г. Составы смесей представлены в таблице 8.

Анализ микроструктуры показывает, что при наплавлении двухслойной смесью формируется 4-х фазная структура, включающая светлые дендриты (1) и серые пластины (2), распределённые в тёмно-серой матрице (3) и участком (4), рисунок 26. По данным рентгенофазового анализа, рисунок 27, в состав покрытия входят 4 фазы: твёрдый раствор молибдена Mo_p, фазы Ni₂AlTi, NiTi и NiTi₂. Элементный состав структурных элементов для двухслойной наплавки приведён в таблице 10.

Рисунок 26 - Микроструктура двухслойной наплавки Mo-Si-B-Ni

Рисунок 27 - Фазовый состав двухслойной наплавки Mo-Si-B-Ni

TC	10	0		U U	0/
Гаолина	10 -	COCTAR CTNVKTVDHLIX	эпементов лля	пвухопоиной наплавки	f % Bec
таолица	10	Coolub cipyki ypiibik	элементов для	Aby Achoniton mannabar	1, /0 DCC

No	Мо	Ni	Ti	Si	Al	Фазы
1	80-84	1,7-2	2-2,2	0,1	0,6-0,7	[Mo,Ti,Ni,Al,Si] _p
2	0,5-0,6	53-54	11-12	0,1-0,8	1,9-2,0	Ni ₂ AlTi
3	1,0-1,1	44-45	13-14	0,7-0,8	5-5,3	Ni ₃ Ti
4	6-9	2-3	54-56	0,1	0,3-0,6	NiTi ₂

Определение прочности соединения сплава Mo-Ni-Si-B с титановой основой методом центробежной СВС-наплавки

Оснастка для наплавки сплава Mo-Ni-Si-B на стержень из титанового сплава BT1-0 и эскиз титанового стержня представлены на рисунке 28a и 28б. Для наплавки использовали двухслойную смесь MoO₃/Al/Si/B/Al₂O₃ и NiO/CaO₂/Al. Состав слоёв представлен в таблице 8. Масса и первого и второго слоя составляет 75 грамм. Наплавку проводили в графитовой форме диаметром 40 мм при перегрузке a=100g.

Вид наплавленного образца представлен на рисунке 29а. Соотношение масс слоёв составляет М1/М2=50/50 г., а=100g. Образцы имели форму грибков, удобную для определения прочности на отрыв наплавленного сплава от титановой основы на испытательной универсальной машине INSTRON 1195.

Испытания показали, что разрыв происходит при нагрузке P=1325 кг. Предел прочности, рассчитанный по формуле σ=P/S составил 10 кг/мм² (100 МПа). Из результатов испытаний следует, что разрыв произошел по "ножке" грибка в переходной зоне, рисунок 296.

Анализ полученных результатов показал, что процесс CBC-наплавки сплавов Mo-Si-B на титановые основы протекает стадийно. В результате формируется слой литого материала, прочно соединенного с титановой основой. Эксперименты показали, что для реализации CBC-наплавки и получения слоевых материалов необходимо, чтобы исходные смеси термитного типа были способны к горению и температура их горения была бы выше температуры плавления конечных продуктов, а также титановой основы.

В седьмой главе представлены результаты исследований крупных слитков сплавов Mo-Si-В и Mo-Nb-Si-B. Для синтеза крупных слитков весом до 1,5 кг использовали периклазовые и стальные (с набивной футеровкой из корунда) формы, позволяющие сжигать до 3 кг смеси. Для синтеза использовали смеси с оптимальным составом, определённые в главах 3 и 4. Для изучения влияния масштабного фактора на процесс, состав и структуру сплавов использовали опытнотехнологическую центробежную установку, предназначенную для сжигания шихты до 5 кг.

Рисунок 30 - Фотография, микроструктура и рентгенограмма слитка Mo-Si-B

Для получения крупных слитков Mo-Si-B использовали смеси MoO₃/Al/Si/B + 20% Al₂O₃ при следующем соотношении компонентов: MoO₃-71,6, Al-26,5, Si-1,4, B-0,5 % вес. Смеси массой 2,5 кг сжигали при перегрузке 100g. Вид слитка, массой 900 грамм, полученного в стальной форме, представлен на рисунке 30а.

Характеристики процесса (скорость горения -u, потеря смеси при горении -η₁ и полнота выхода сплава в слиток -η₂) и химический состав, полученный методом аналитической химии, приведены в таблице 11.

Таблица 11 - Характеристики процесса и химический состав слитка Mo-Si-B

Характеристики процесса			Химический состав слитка, % вес.				
и, см/с	η ₁ , % вес.	η ₂ , % вес.	Мо	Si	В	Al	
5-6	5,5-7	80-85	Ост.	2,1-2,2	0,6-0,7	2-3	

Микроструктура крупного слитка Mo-Si-B при увеличении 10 мкм представлена на рисунке 306. Из анализа микроструктуры следует, что сплав имеет композиционную структуру: светлые зёрна (1) округлой формы распределены в серой матрице (2) содержат преимущественно Мо, а матрица включает тёмно-серые участки (3) Мо, Si, Al.

По данным РФА слиток содержит 3 фазы: твёрдый раствор Mo_p , Mo_3Si и Mo_5SiB_2 , рисунок 30в. Расчётное содержание элементов в Mo_3Si : Mo-91%, Si-9%, а в Mo_5SiB_2 : Mo-91,0%, Si-5,0%, B-4,0% вес.

Для получения крупных слитков Mo-Nb-Si-B использовали смесь MoO₃/Nb₂O₅/Al/Si/B + 20% вес. Al₂O₃ при следующем соотношении компонентов MoO₃-68,9, Nb₂O₅-2,4, Al-26,7, Si-1,5, B-0,5, % вес. Смеси массой 1375 г сжигали в периклазовой форме, при перегрузке 100g. Вид слитка, массой 500 г, представлен на рисунке 31а. Было установлено, что потери при горении смеси MoO₃/Nb₂O₅/Al/Si/B/Al₂O₃ и полнота выхода сплава в слиток мало отличаются от полученных для смеси MoO₃/Al/Si/B вследствие небольшой массы добавки Nb₂O₅/Al.

Характеристики процесса и химический состав сплава Mo-Nb-Si-B, показаны в таблице 12.

Таблица 12 - Характеристики процесса и химический состав слитка Mo-Nb-Si-B

Характеристики процесса			Химический состав слитка, % вес.					
и, см/с	η ₁ , % вес.	η ₂ , % вес.	Mo	Nb	Si	В	Al	
2-3	6-8	70-75	Ост.	3-3,4	2,5-3	0,8-1	4-5	

Из сопоставления таблиц 11 и 12, следует, что химический состав сплава близок к расчётному. В сплаве присутствует примесь алюминия (Al).

Сплав имеет композиционную структуру, в которой светлые округлые зёрна (1) составляют основу сплава, Nb и Si локализуется по границам зёрен, рисунок 31б.

Рисунок 31 - Фото, микроструктура и рентгенограмма слитка Mo-Nb-Si-B

По данным РФА крупные слитки, а также слитки массой 20-40 грамм, содержат 3 фазы: твёрдый раствор молибдена Mo_p, Mo₃Si и Mo₅SiB₂, рисунок 31в. Расчётное содержание элементов в Mo₃Si: Mo-91%, Si-9% вес., а в Mo₅SiB₂: Mo - 91%, Si - 5%, В – 4% вес. Из сопоставления данных рентгенофазового анализа и анализа микроструктуры сплава можно сделать вывод, что светло-серые зоны границ (рисунки 316 и 31в) являются фазой Mo₃Si, а тёмно-серые (3) – Mo₅SiB₂.

Для крупных образцов сплава, полученных в периклазовом тигле, была изучена однородность химического состава по его объёму. Схема анализа приведена на рисунке 32. По данным СЭМ, химический состав мало меняется по объёму слитка, таблица 13.

Рисунок 32 - Схема анализа слитка Mo-Nb-Si-B

Таблица 13 - Химический состав в точках 1, 2 и 3, % вес.

N⁰	Мо	Nb	Si	Al
1	91,2	2,0	2,7	1,2
2	91,4	2,1	2,7	1,1
3	91,5	2,0	2,8	1,2

Из сопоставления результатов, приведенных в главах 3, 4 и 7 следует, что химический и фазовый составы, макро- и микроструктура слитков Mo-Si-B и Mo-Nb-Si-B массой 20-40 г и массой 0,5 - 1,5 кг идентичны.

Основные результаты работы и выводы

1. В экспериментах установлено, что горение высокоэкзотермических смесей $MoO_3/Al/Si/B$, $MoO_3/Nb_2O_5/Al/Si/B$ и $MoO_3/Al/Si/B/Ti/C$ в атмосферных условиях сопровождается интенсивным разбросом продуктов горения, причиной которого является выделение газа из продуктов горения. Введение в смеси "холодного" элементного состава (Mo/Si/B, Mo/Si/B/Nb, Ti/C) и/или инертной добавки (Al₂O₃), а также проведение горения под центробежным воздействием позволяет подавить разброс, реализовать сепарацию целевого продукта (сплава) и шлака (Al₂O₃) в расплаве продуктов горения и получить после охлаждения двухслойный слиток с чётким разделением сплава и шлака.

2. Показано, что с ростом содержания элементного состава или инертной добавки в смеси скорость горения смесей и относительная потеря массы уменьшаются, а затем достигается предел горения; полнота выхода целевых элементов в слиток проходит через максимум. С ростом перегрузки скорость горения смесей возрастает с насыщением, относительная потеря массы уменьшается, и выход в слиток возрастает. По результатам экспериментов определены оптимальные области для получения сплавов Mo-Si-B, Mo-Si-B-Nb, Mo-Si-B-Ti-C, Mo-Ni-Ti-C.

3. По данным РФА было установлено, что литой сплав Mo-Si-B, содержит 3 фазы – твёрдый раствор молибдена - Mo_p, Mo₃Si и Mo₅SiB₂. Из сопоставления пиков с максимальной интенсивностью на рентгенограммах следует, что основу сплава составляет фаза твёрдого раствора Mo_p, в которой по границам зёрен распределены фазы Mo₅SiB₂ и Mo₃Si. При введении в состав литого сплава ниобия новых фаз не образуется. По результатам СЭМ, Nb растворён в фазах Mo, Mo₅SiB₂ и Mo₃Si.

4. Введение Ti+C и TiC в состав литого Mo-Si-B существенно изменяет его фазовый состав и микроструктуру. Микроструктура содержит отличающихся по форме и цвету структурные элементы. Количественный анализ структурных составляющих и рентгенофазовый анализы, позволили установить следующие фазы: Mo_p, Mo₅SiB₂, (Mo)₂C и (Mo)C.

5. Была реализована центробежная СВС-наплавка сплавов Mo-Si-B и Mo-Ni-Si-B на титановые основы, изучены состав и структура покрытия и переходной зоны.

6. При изучении влияния масштабного фактора, показано, что увеличение массы смесей $MoO_3/Al/Si/B/Al_2O_3$ и $MoO_3/Nb_2O_5/Al/Si/B/Al_2O_3$ от 20 г до 1 кг приводит к существенному увеличению полноты выхода целевого продукта в слиток (на 20-30%), при этом состав и структура литых сплавов практически не изменяется.

7. Впервые методом центробежной CBC-металлургии получены литые сплавы Mo-Si-B, Mo-Nb-Si-B, с содержанием Si до 3, B до 1, Nb до 3,4 % вес., а также сплавы Mo-Si-B-Ti-C и Mo-Ni-Ti-C с содержанием Ti до 5 и C до 2 % вес., и осуществлена наплавка Mo-Si-B на титановые основы.

Публикации по теме работы

1. Andreev, D.E. Mo-Nb-Si-B Alloy: Synthesis, Composition, and Structure / D.E. Andreev, Y.S. Vdovin, V.I. Yukhvid, O.A. Golosova // Metals. -2021. - N 211. - P. 803. DOI: 10.3390/met11050803.

2. Vdovin, Y.S. Centrifugal SHS Surfacing of Titanium Substrate with Mo-Si-B / Yu.S. Vdovin, D.E. Andreev, V.I. Yukhvid // International Journal of Self-Propagating High-Temperature Synthesis. – 2021. – V. 30. – № 4. – P. 269–270. DOI: 10.3103/S1061386221040130.

3. Yukhvid, V.I. Cast MoSiBTiC composites by metallothermic SHS: influence of Ti and C dopants / V.I. Yukhvid, **Y.S. Vdovin**, D.E. Andreev // International Journal of Self-Propagating High-Temperature Synthesis. $-2021. - V. 30. - N_{2} 3. - P. 153-158$. DOI: 10.3103/S1061386221030109.

4. Андреев, Д.Е. Центробежный автоволновой синтез композиционных материалов Мо–Si– В / Д.Е. Андреев, **Ю.С. Вдовин**, В.И. Юхвид, Н.В. Сачкова, И.Д. Ковалев // Химическая физика. – 2020. – Т. 39. – № 3. – С. 24–28. DOI: 10.31857/S0207401X20030024;

Andreev, D.E. Centrifugal SHS-Metallurgy of Composite Materials Mo–Si–B / D.E. Andreev, **Y.S. Vdovin**, V.I. Yukhvid, N.V. Sachkova, I.D. Kovalev // *Russian Journal of Physical Chemistry B* – 2020. – N_{2} 14. – P. 261–265. DOI: 10.1134/S1990793120020025.

5. Андреев, Д.Е. Формирование состава и структуры в процессе СВС-металлургии композиционных материалов на основе Мо, легированных Nb, Si и B / Д.Е. Андреев, Ю.С. Вдовин, В.И. Юхвид, Н.В. Сачкова, Т.И. Игнатьева, И.Д. Ковалев // Неорганические материалы. – 2020. – Т. 56. – № 12. – С. 1336–1341. DOI: 10.31857/S0002337X20120027.

Andreev, D.E. Tailoring the Composition and Structure of Nb-, Si-, and B-Doped Mo-Based Composite Materials in the Self-Propagating High-Temperature Synthesis Metallurgy Process / D.E. Andreev, **Y.S. Vdovin**, V.I. Yukhvid, N.V. Sachkova, T.I. Ignat'eva, I.D. Kovalev // Inorganic Materials. – 2020. – V. 56. – № 12. – P. 1265–1270. DOI: 10.1134/S002016852012002X.

6. Vdovin, Y.S. Dispersion Strengthened Mo-Based Cast Composite by Centrifugal SHS / Yu.S. Vdovin, D.E. Andreev, V.I. Yukhvid // International Journal of Self-Propagating High-Temperature Synthesis. – 2020. – V. 29. – № 1. – P. 49–51. DOI: 10.3103/S106138622001015X.

7. Vdovin, Y.S. Mo-Based Composites Reinforced with Nb, Si, and B by Metallothermic SHS under Artificial Gravity / Yu.S. Vdovin, D.E. Andreev, V.I. Yukhvid // International Journal of Self-Propagating High-Temperature Synthesis. – 2019. – V. 28. – N_{2} 4. – P. 274–275. DOI: 10.3103/S1061386219040149.

Патент:

1. Вдовин Ю.С., Андреев Д.Е., Юхвид В.И. «Способ получения жаропрочных сплавов на основе молибдена», патент РФ на изобретение № 2776265 от 20.04.2021 г.