On Glass Formation in the TiB₂-Containing CaO-Al₂O₃-SiO₂ System Prepared by Self-Propagating High-Temperature (Combustion) Synthesis

H.C. Yi¹, J.Y. Guigné^{1,2}, J.J. Moore³, L.A. Robinson¹, and A.R. Manerbino¹

¹ Guigné International Ltd, 685 St. Thomas Line, Paradise, NF, Canada A1L 3V2

² Guigné Space Systems Inc. (GSSI), Golden, Colorado

³ Institute for Space Resources (ISR), Colorado School of Mines, Golden, Colorado

Combustion synthesis and glass formation have been studied in the TiB₂-CaO-Al₂O₃-SiO₂ system where the reacted product consisted of a solid crystalline TiB₂ phase embedded in a CaO-Al₂O₃-SiO₂ matrix. The addition of silica (SiO₂, quartz) has led to a reduction in both the combustion temperature and wave velocity, formation of Gehelenite (Ca₂Al₂Si₇) at the smaller silica content and promotion of the glass phase. Increasing the content of silica resulted in an enhanced glass formation and in the suppression of other crystalline phases. A pure glass matrix was obtained for all compositions in the range from $Ca_{12}Al_7O_{33}$ to $CaAl_2O_4$ compounds provided an adequate amount of silica was added.