Vol. 14, Number 3, 2005

Structure Formation of SrAl₂O₄ Synthesized by Solution Combustion Synthesis

H. Tanaka^{a,} H. Wada^b and O. Odawara^a

^a Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan

^b MSNC, Sony Co., 4-14-1, Asahi-cho, Atsugi, 243-0014, Japan

ABSTRACT

Strontium aluminates (SrAl₂O₄) powders, which are well-known matrix materials in fluorescent applications, have been synthesized by a solution combustion synthesis technology with reactants of strontium nitrate, aluminum nitrate, and urea. The phase changes of synthesized SrAl₂O₄ structures have been investigated to make clear the effects of reactant concentrations and preheating temperatures of solution combustion synthesis. The combustion synthesis reactions could be confirmed to occur above 870K. As a result, within the range of preheating temperatures tested between 870 K and 1270 K, monoclinic-SrAl₂O₄, hexagonal-SrAl₂O₄, Sr₃Al₂O₆, and SrAl₄O₇ could be identified. The hexagonal-SrAl₂O₄ existed at the tested whole temperature ranges, and the maximum ratio of monoclinic-SrAl₂O₄ increased and that of SrAl₄O₇ decreased. In the case of with a urea amount 1.5 times more than the stoichiometric ratio, the ratio of monoclinic-SrAl₂O₄ by the present solution combustion synthesis.

Keywords: Solution combustion synthesis, strontium aluminates, phase transition, and long-afterglow luminescent materials.