СВС - МЕТАЛЛУРГИЯ БОРИДОВ ХРОМА И ТИТАНА ИЗ ТЕРМИТНЫХ СМЕСЕЙ С ИСПОЛЬЗОВАНИЕМ ХРОМАТОВ КАЛЬЦИЯ

Милосердов П.А., Горшков В.А., Юхвид В.И., Н.Ю. Хоменко, Н.В. Сачкова

Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук, Черноголовка, Россия уш group@ism.ac.ru

Бориды титана и хрома применяются для изготовления жаропрочных, износостойких огнеупорных сплавов И основу режущих как высокотемпературных материалов, в керметах для ядерной техники, для изготовления чехлов термопар погружения и т.д. Порошок борида хрома применяют в составе различных жаропрочных сплавов типа боролитов при значительных нагрузках и высоких температурах, а также для создания износостойких наплавочных сплавов (БХ-2, КБХ). Бориды титана и хрома обладают неограниченной взаимной растворимостью. Система Ti-Cr-В имеет твердость выше индивидуальных соединений и, с недавних пор, интенсивно исследуется, как перспективный материал для ядерной энергетики. Для создания данных материалов и их промышленного производства наиболее широко используют методы плавления и высокотемпературной консолидации (спекание и горячее прессование) из смесей металлического порошка и чистых порошков бора или сажи в вакууме при температурах 1800-2200 °C. Керамика на основе боридов хрома, особенно CrB2, обладает уникальными свойствами: высокая твердость (20-22 ГПа), высокой температурой плавления (2200 °C), хороший модуль упругости (211 ГПа), хорошей стойкостью к окислению, высокой теплопроводностью, коэффициентом термического расширения, высокая износостойкость и химическая инертность [1,2]. Эти отличные свойства позволяют использовать его в качестве материала для высокотемпературных конструкционных изделий и твердых покрытий на режущих инструментах [3].

Бориды титана и хрома также получают методом CBC-металлургии из смесей на основе оксидов хрома(CrO_3), титана (TiO_2), бора (B_2O_3) и алюминия. От CrO_3 было решено отказаться вследствие его токсичности [4] и термической нестабильности. В данной работе представлены результаты исследований систем на основе хромата кальция $CaCrO_4$, частично опубликованные в работе [5].

Для получения боридов хрома использовали схему: $CaCrO_4+Al+nB \rightarrow Cr_xB_y +Al_2O_3+CaO$ и 2. где количество бора (n) бралось из расчёта для получения фаз Cr_2B , Cr_3B_4 , Cr_3B_4 , Cr_3B_2 .

Термодинамические расчеты по программе THERMO показали, что в смеси с увеличением доли бора температура горения при P=5МПа снижается от 3394 K до 2588 K рис.1а.

Результаты экспериментов в бомбе постоянного давления V=3,5 литра при начальном давлении 50 атм. Показали (рис.1b), что с увеличением доли бора в исходной смеси скорость горения (U) и величина диспергирования (η_2) снижаются. Выход целевого продукта (η_1) растет до 26% при n = 4,9, затем снижается до 18% при n = 9,3.

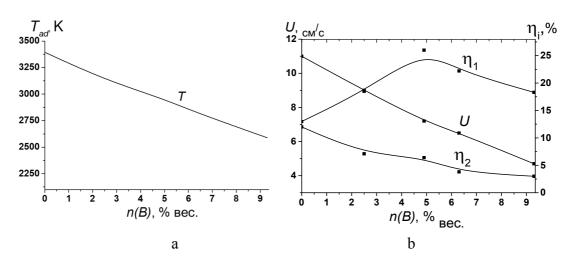


Рисунок 1. Влияние содержания бора в исходной смеси на: а) адиабатическую температуру горения (T); b) на скорость горения (U), выход целевого продукта (η_1) и величину диспергирования(η_2).

Фазовый состав продукта представлен на рисунке 2. основу металлических продуктов составляют различные бориды, алюминид хрома и свободный алюминий.

Для получения титанохромового борида был проведен термодинамический анализ смесей на основе двух схем химического превращения:

$$CaCrO_4 + 2Al + 2B = CrB_2 + Al_2O_3 + CaO$$
 1
3TiO₂ +4Al + 6B \rightarrow 3TiB₂ +2Al₂O₃.

Согласно термодинамическим расчетам продуктами химического превращения смеси являются "металлический" (Cr-B-Ti-Al) и оксидный (Al₂O₃-B₂Ca₃O₆) расплавы. С ростом α , где $\alpha = [M2/(M1+M2)]100$ %/,: \mathbf{M}_1 – масса смеси 1, а \mathbf{M}_2 – масса смеси 2, содержание "металлической" фазы продуктов горения (a) растет, температура горения

плавно снижается от 2656 K до 2590 K при α = 80%, затем идет резкое падение до 2450 K , рис.3.

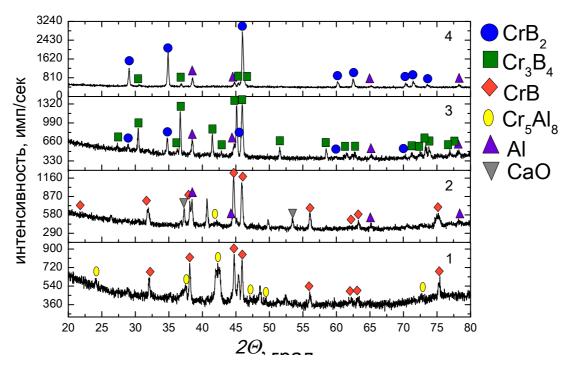


Рисунок 2. Влияние содержания B в исходной смеси (n) на фазовый состав металлического продукта. 1-n=2,5% вес.; 2-n=4,9% вес.; 3-n=6,4% вес.; 4-n=9,3% вес.

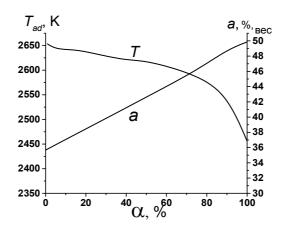


Рисунок 3. Результаты термодинамического анализа системы $CaCrO_4 + TiO_2 + Al + B$.

Эксперименты показали (рис.4), что вследствие низкой расчетной температуры горения, смеси способны к горению в интервале α 0-20%, С увеличением α скорость горения снижается от 11 мм/с до 7мм/с, прирост давления в реакторе ΔP также

снижается от 13,5 атм до 8 атм. Выход целевого продукта с увеличением α снижается и предел фазоразделения наступает при $\alpha = 15\%$. Величина диспергирования также уменьшается.

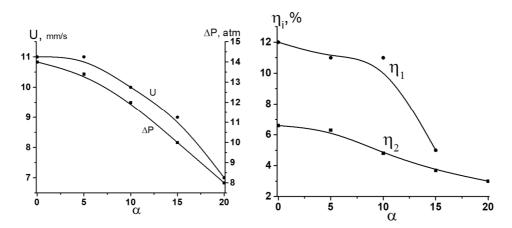


Рис. 4. Влияние α на скорость горения U и прирост давления ΔP в реакторе (a), на выход целевого продукта η_1 и разброс продуктов горения η_2 . $\alpha = M2/(M1+M2) \times 100\%$ где M1 масса смеси по схеме 1, M2 – масса смеси по схеме 2.

Для расширения предела фазоразделения был проведен эксперимент на смеси при $\alpha=20$, в которую вводили 20% высокоэкзотермической добавки CaO₂+Al. В результате эксперимента удалось добиться фазоразделения, но боридный слиток в виде капель диаметром от 1 до 5 мм, был распределен в оксидном слитке и плохо отделялся от него.

Рентгенографический анализ (рис.5) показал, что продукт получился многофазным. Основной фазой является титанохромовый борид $Cr_{0,5}Ti_{0,5}B_2$, также в образце присутствуют бориды хрома CrB_2 и Cr_3B_4 , алюминиды титана, карбид молибдена и фаза $Cr_{0.85}Al_{0.15}B_2$.

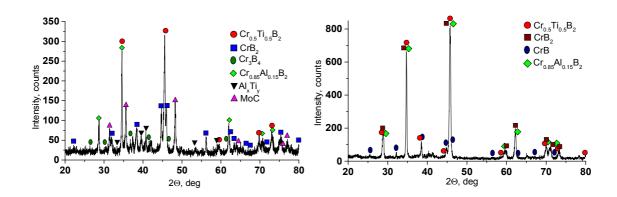


Рис. 5. Рентгенограмма образца системы $CaCrO_4 + TiO_2 + Al + B$ при $\alpha = 10\%$ (a) и $\alpha = 20\%$ (b).

Микроструктурный анализ образцов, полученных при α = 10 и 20% приведен на рисунках 6 и 7

Service of Marie Control	№ B O Al Ti Cr Mo	
70	1 31,4 1,2 1,1 57,6 8,7	
"1 " "3" "3" "3" "3" "3" "3" "3" "3" "3" "	2 30,6 1,2 1,1 58,7 8,4	
	3 36,3 1,1 2,4 49,7 10,5	
	4 38,2 1,8 2,3 47,5 10,2	
	5 41,5 0,7 26,3 20,3 11,2	
	6 38,6 0,4 32,9 16,3 11,8	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 45,5 0,4 18,0 28,0 8,0	
	8 47,3 0,3 17,8 27,5 7,1	
20µm Electron Image 1	9 37,0 57,4 1,3 3,4 0,9	
	10 31,6 37,8 8,2 18,4 4,1	

Рисунок 6. Микроструктура образа α = 10%. Элементный состав в %, вес.

A CONTRACTOR			No	В	Al	Ti	Cr	
6		1	1	23,6	1,0	2,9	72,5	
		2	2	22,1	0,9	3,5	73,5	
100		100	3	39,1	0,4	27,8	32,7	
" <u>4</u>	Anne		4	40,6	0,5	24,5	34,4	
		CA.	5	37,5	0,6	39,2	22,7	
	#5		6	38,8	0,4	32,7	28,2	
MA TO		ل	7	39,9	0,3	35,9	24,0	
	2		8	39,2	0,7	34,3	25,8	
And the second			Sum	32,8	0,9	18,6	47,8	
10μm	Electron Image 1							-

Рисунок 7. Микроструктура образа $\alpha = 20\%$. Элементный состав в %, вес.

На микроструктурах видно, что в обоих случаях CrB_2 является основной фазой (светло серая основа) в которой равномерно распределен титанохромовый борид (темно серые включения) и присутствует оксидная фаза Al_2O_3 . На микроструктуре образца при $\alpha = 20\%$ видно, что включения титанохромового борида более равномерно

распределены по образцу. Что сказывается более высокой температурой синтеза и более долгим временем жизни расплава, в котором восстановленный титан реагирует с боридом хрома

Выводы

- 1.И3 результатов экспериментов исследований следует, что замена CrO_3 в исходной смеси на малогигроскопичный стабильный $CaCrO_4$ позволяет сохранить высокую энергетику исходной смеси и способность смеси к горению, а также получать тугоплавкие карбиды и бориды хрома в литом виде.
- 2. Изучены закономерности горения и автоволнового химического превращения высокоэкзотермических составов $CaCrO_4/Al/B$ и $CaCrO_4/TiO_2/Al/B$. Показано, что смеси способны гореть в широком диапазоне содержания В. При добавлении в смесь на получение CrB_2 смеси 2, предел фазоразделения наступает при $\alpha = 15\%$
- 3. Рентгенограмма продукта полученного при $\alpha = 10\%$ показывает, что удалось получить титано-хромовый борид. Использование высокоэкзотермической добавки CaO_2+Al для увеличения температуры горения позволило расширить пределы фазоразделения и получить композиционный материал в системе Cr-Ti-B.

Литература

- [1] Jordan L.R., Betts A.J., Dahm K.L., Dearnley P.A., Wright G.A. Corrosion and passivation mechanism of chromium diboride coatings on stainless steel // Corrosion Science. 2005. Vol., 47, iss. 5. P. 1085–1096. https://doi.org/10.1016/j.corsci.2003.10.018
- [2] K. Iizumi, K. Kudaka, S. Odaka, Synthesis of chromium borides by solid-state reaction between chromium oxide (III) and amorphous boron powders // Journal of The Ceramic Society of Japan 1998. Vol. 106, No. 1237. P. 931-934. http://doi.org/10.2109/jcersj.106.931
- [3] K. Iizumi, K. Kudaka, D.Maezawa, T. Sasaki, Mechanochemical synthesis of chromium borides // Journal of The Ceramic Society of Japan. 1999. –Vol. 107 No. 1245., iss. 5. P. 491–493. http://doi.org/10.2109/jcersj.107.491
- [4] Salnikow, K. and Zhitkovich, A., «Genetic and Epigenetic Mechanisms in Metal Carcinogenesis and Cocarcinogenesis: Nickel, Arsenic, and Chromium», Chem. Res. Toxicol., 2008, 21, 28-44.
- [5] П.А. Милосердов, В.И. Юхвид, В.А. Горшков, Т.И. Игнатьева, В.Н. Семёнова, А.С. Щукин. Закономерности горения и автоволнового химического

превращения высокоэкзотермического состава $CaCrO_4/Al/B$. Физика горения и взрыва. 2017, №6, с. 53-57