METALLOTHERMIC SHS REACTIONS INVOLVING NIOBIUM OXIDE

V. I. Yukhvid, D. E. Andreev, V. N. Sanin, N. V. Sachkova and M. I. Alymov

Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Chernogolovka, Moscow, Russia

COIMBRA, PORTUGAL, 2016

CHEMICAL SCHEMES OF SHS FOR CAST ALLOY Nb-Si(Hf, Ti, Al)

Preparation of Nb:

 $3Nb2O5 + 10Al \rightarrow 6Nb + 5Al2O3$, Tc = 2750K

Preparation of cast alloy:

Nb2O5/2Al/Si/4Hf/Ti/Al→m1Nb-Si(Hf, Ti, Al)+m2Al2O3

EXPERIMENTAL

Reagents:

powders of Nb2O5, Cr2O3, TiO2; Al, Hf, Si

granuless HfAl₃: d: 0-40, 100-160, 160-300 мкм

Initial mixtures

- Nb2O5/Al/Si/Hf/Ti

- Nb2O5/Al/Si/HfAl₃/Ti

CENTRIFUGAL SHS INSTALATION

Overload – 50-500 g Mass of initial from 0,5 to 1,5 kg.

MAIN STAGES IN SHS OF Nb-Si(Hf, Ti, Al) ALLOY

(1) –oxide phase, (2) – alloy

Characteristic times

- burning time: $t_1 = H / u$
- gravity separation time: $t_2 \sim h/v$, $v = (\rho_2 \rho_1)d_m^2 g / 18\mu$
- cooling time: $t_3 \sim D^2 / a$

INFLUENCE OF HFAI₃ GRAIN SIZE ON SHS PARAMETERS

u-combustion velocitiy η_1 -fullness of mixture sputtering η_2 -completeness of output alloy in ingot

Two layered cast SHS product

Nb-Si(Hf, Ti, Al) alloy —

INFLUENCE OF HFAI₃ GRAIN SIZE ON CHEMICLE COMPOSITION Nb-Si(Hf, Ti, Al) ALLOY

Phase composition of bottom layer of combustion product

The map of elements distribution in the Nb-Si(Hf, Ti, Al) alloy

microsection

Al Ka1

COMPOSITION AND STRUCTURE OF OXIDE COMBUSTION PRODUCT (LAYER UPPER LAYER)

0	Al	Si	Ti	Nb	Hf
48.0	30.3	0.5	6.3	0.9	13.1

MICROSTRUCTURE AND ELEMETS DISTRIBUTION IN OXIDE LAYER

Al Ka1

microsection

Hf La1

Ti Ka1

O Ka1

MICROSTRUCTURE AND CHEMICAL COMPOSITION OF STRUCTURAL UNITS IN OXIDE LAYER

20µm

Electron Image 1

N⁰	0	Al	Ti	Hf
1	54.0	44.4	1.0	0.4
2	53.9	45.0	1.0	0.2
3	33.5	10.7	20.3	33.5
4	33.7	10.4	20.8	32.4
5	28.6	5.0	16.3	48.2
6	27.3	4.5	16.7	49.5

CTADYES OF CHEMICLE CONVERSION IN COMBUSTION VAWE

Nb2O5/2Al/Si/4HfAl₃/Ti \rightarrow

1) Nb2O5 +Al/HfAl₃/Ti \rightarrow Nb + m(Al₂O₃/HfO₂/TiO₂)

2) Nb +Ti*/Al*/Si \rightarrow Nb/ Hf* /Ti*/Al*/Si

CONCLUSION

- The results demonstrate that centrifugal SHS can be used to fabricate cast niobium silicide based composite materials.
- After combustion, centrifugal forces separate a two-phase products melt on two layer; the top (slag) layer is oxides and the bottom layer is "metallic."
- The metallic bottom layer has a composite structure, consists of the base elements (Nb, Si, Hf and Ti), and contains three phases: a Nb based phase, Nb5Si3 and Nb3Si.
- The slag layer has a two-phase structure: (1) solid solution based on Al_2O_3 and (2) solid solution based on Hf and Ti oxides.