

STRENGTH PROPERTIES OF AL2519/TI6AL4V BIMETALL FABRICATED BY EXPLOSIVE WELDING

Michał Najwer¹, Grzegorz Kwiatkowski² ¹ Zakład Technologii Wysokoenergetycznych "Explomet", Gałka, Szulc, Sp. J.

 \mathcal{O}

New advanced layer AI-Ti materials with enhanced ballistic resistance for aeronautic and space constructions

Presentation plan

- 1. Application
- 2. Tested materials
- 3. Performed studies
- 4. Heat treatments
- 5. Analysis of obtained results
- 6. Conclusions

Narodowe Centrum Badań i Rozwoju wew advanced layer AL-II-materials with enhanced ballistic resistance for aeronautic and space constructions

Application of lightweight materials

Weight reduction= cheaper exploitation

Maintain or improving the properties

Searching for new materials

11111111111

Narodowe Centrum

Badań i Rozwoju

.04

Application of lightweight materials

ALC: NOT ALC											
AA2519	5 mm	Materiał	Cu, %	Mn, %	Si, %	Fe, %	Al, %	R _m , MPa	R _{p0,2} , МРа	A, %	ρ, g/cm³
		AA2519	6,2	0,4	0,25	0,5	Rest	430	355	15	2,7
AA1050	1 mm	Materiał	Cu, %	Mn, %	Si, %	Fe, %	Al, %	R _m , MPa	R _{p0,2} , МРа	A, %	ρ, g/cm³
		AA1050	0,04	0,04	0,24	0,27	Rest	125	85	12	2,7
Ti6Al4V	5 mm	Materiał	C, %	N, %	V, %	Al, %	Ti, %	R _m , MPa	R _{p0,2} , MPa	A, %	ρ, g/cm³
		Ti6Al4V	0,1	0,05	4,5	6,75	Rest	860	758	10	4,5

Narodowe Centrum Badań i Rozwoju

New advanced layer Al-Ti materials with enhanced ballistic resistance for aeronautic and space constructions

Application of lightweight materials as housings

Badań i Rozwoju

New advanced layer AI-Ti materials with enhanced ballistic resistance for aeronautic and space constructions

Application of lightweight materials as housings

Experimental procedure

- Simulated heat treatments
- Tensile test
- Ram test
- Bend test with force measurments
- Hardness measurments

Narodowe Centrum Badań i Rozwoju

Simulated heat treatments

 \mathcal{O}

New advanced layer AI-Ti materials with enhanced ballistic resistance for aeronautic and space constructions

Tensile test

Narodowe Centrum Badań i Rozwoju

 \mathcal{O}

Ram test

Nowe zaawansowane materiały warstwowe AI-Ti o podwyższonej

odporności balistycznej na konstrukcje lotnicze i kosmiczne

Bend tests

11

 \mathcal{D}

New advanced layer AI-Ti materials with enhanced ballistic resistance for aeronautic and space constructions

Bend tests

Bend test - tensile Ti6Al4V layer

Bend test - tensile AA2519 layer

Hardness measurments

Conclusions

- proposed heat treatments conditions and operations like rolling have significant impact on tensile strength, ram strength, force used to bending and hardness of individual layers of the studied trimetal;
- the highest tensile strength and ram strength, as well as proper hardness was obtained for HT2;
- it is possible to use the obtained knowledge for proper designing of sequence of shaping stages of such claddings, which allows both plastic shaping of these sheets and obtaining desired increased strength and hardness without risk of damage potentially resulting from deformations related to production processes.

ZAKŁAD TECHNOLOGII WYSOKOENERGETYCZNYCH EXPLOMET GAŁKA, SZULC SPÓŁKA JAWNA

Thank you for the attention!

URZĄD MARSZAŁKOWSKI Województwa Opolskiego UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO

