XIII International Symposium on Explosive Production of New Materials

OPTICAL DETONATION MEASUREMENTS AND DESIGN OF EXPLOSION CHAMBER FOR SMALL OF EXPLOSIVES

J. Quaresma^{a, b}, J. Pimenta^a, R. Mendes^a, J. Góis^a, J. Campos^a, L. Deimling^b

and T. Keicher^b

^aLEDAP/ADAI - ^aMech. Eng. and ^cChem. Dep.'s, Fac. Sc. Tech., Univ. of Coimbra, 3030-788 Coimbra, Portugal

b Fraunhofer Institut für Chemische Technologie (ICT), 76327 Pfinztal, Germany

Contents

Initial proposed presentation was

- 1. Optical detonation measurements
- 2. Design of explosion chamber for small **test samples**

Design of explosion chamber was presented before

The present presentation will concerns the optical measurement techniques and results

Contents

- 1. Motivations
- 2. Why optical methods?
- 3. Detonation theory
- 4. Metrology
 - 4.1. Set-up for metrology
 - 4.2. Experiments
 - 4.3. Data analysis

5. Summary

Motivations

Motivations

Why do we investigate explosives? What are we interested in?

Motivations

Why do we investigate explosives?

It is the cheapest way to get very high power in a short period of time, released by a reliable chemical reaction induced by a supersonic shock wave

What are we interested in?

Characterization of the thermodynamic properties (D, P, p, E) through the kinetic properties of the main shock wave:

- propagation / detonation velocity
- **Development of a metrology**

particular velocity

Why optical methods?

The detonation can be assumed as a shock-reaction process – the thermal radiation is generated by the detonation products behind shock front, mainly the solid carbon.

Why optical methods?

Since detonation emits radiation, our metrology uses optical fibers, to "catch" that radiation for measurements.

Optical fibers can offer:

- Accurate and fast response
- Channel independence
- Reliability
- Scalability small and big tests are correlated
- Favorable electromagnetics the captured radiation are not affected by the electromagnetic fields generated during the detonation
- Not expensive method fibers are cheap and we lead with a destructive process

Detonation theory – metrology background

Initial model was developed by Chapman (1899) and Jouguet (1905) combining the shock and reaction, respectively in fresh and products mixtures, starting by a single approach:

- i. Shock front compresses and heats the fresh material,
- ii. The exothermic reactions are completed instantly,
- iii. The heat produced by the reaction feeds the pressure shock front and drives it forward
- iv. Gaseous products behind the shock wave are expanding and a rarefaction wave is then generated,
- The shock front, the chemical reactions and the leading edge of the rarefaction are in equilibrium – they are moving with the same velocity called detonation velocity and, at last
- vi. The shock front can be assumed as mono-dimensional pressure step constant value with a constant detonation velocity.

Zeldovich (1940), von Neumann (1942) and Doering (1943) individualized shock from reaction zones.

Previous works - metrology background (I. Plaksin, R. Mendes 2009)

Time-resolved measurements of the detonation/reaction zone structure were performed by mean of the 96-channel Multi-Channel Optical Analyzer (MCOA)

- Spatial and temporal resolution of hot spots with the 0.6 ns and 100 µm accuracy

-Kinetic parameters \rightarrow time history of reaction radiance, 450 < λ < 850nm spectrum

-Dynamic parameters → stress field in optic monitor

-The application of the MCOA has provided meso-scale resolution of reaction zones.

Previous works – Existing problems and purposed solutions

- (i) Despite the last fifteen years passed, since MFOP was developed, it remains, up to the present, a very complex diagnostic technique that offers a complex compromise between high temporal/spatial resolutions.
- (i) However, their design stays complex and a fast streak camera is always a condition to record the results as image (and its analysis).
- (ii) Triggering mechanisms and sweep time evaluations stay as delicate operations.

These facts lead us to develop a more simplified method, based on optical fibers and fast optical/electric sensors connected and quantified by a digital signal analyzer.

Metrology – Set-up for metrology

Metrology – First step

Lasers Signals

Problems:

- The falling down of the signals are not precise in time. Why?
 - Are the fibers receiving light before being broken?
 - o Is the detonation light that keeps the sensors saturated?

Lasers Signals

Solution:

 Modulate the lasers signals with squared shapes and 1 MHz of bandwidth

It was proved that :

• The laser lights saturate the sensors, as well as the detonation light.

Problem:

• If the fibers are broken when the sensors are saturated (positive plateau), there is no precision in time

Lasers Signals

 Modulate the lasers signals with squared shapes, 2 MHz of bandwidth and add filters (range between 635 and 675 nm)

It was proved that :

- The fibers, when transversally, just receive light when they break, otherwise the interruption of laser light would not be so drastic.
- With filters is possible to determine precisely the breaking time and identify the different radiations: from the laser and from the detonation

Solution:

Lasers Signals

Challenge:

• Determine the breaking of the fibers without modulation

It was proved that :

• It is possible to determine precisely the time when the fiber breaks without modulation

Lasers Signals

Challenge:

- "Clean" the signals. How?
 - $\circ~$ Use filters with a sharper wavelength (between 635 and 660 nm)

It was proved that :

• The use of the sharper filters improve the falling down of the signal, avoiding undesirable peaks very near to it

Metrology – Remembering First Experiment

Open Fibers Signals

Problem:

• All the signals are saturated

Open Fibers Signals

Solution:

• Use filters on these fibers

It was proved :

Time (µs)

• The use of filters avoids the signal saturation

Challenge:

• Use a single open optical fiber for acquiring the same four signals

Open Fibers Signals

Challenge:

- Use a single open optical fiber for acquiring the same four signals. How?
 - o Make an "S" shape with the fiber

Open Silica Fibers Signals

Challenge:

- Use silica fibers with different diameters (50 and 200 μm) to see the influence of the acquired signals

Problem:

 The signals of the silica fibers with bigger diameters are saturated

Open Silica Fibers Signals

Solution:

• Use filters on the fibers with bigger diameter

It was proved that :

- The signals of silica fibers with bigger diameter (200 μm) have the same behavior (saturation) as PMMA fibers (250 μm)
- To have unsaturated signals we always need filters

Detonation velocity - Open Fibers Signals

Detonation velocity - Open Fibers Signals

Experiment	D (m/s)	<i>D</i> (m/s)	σ (m/s)	Error (%)	
1	7132,413			1,02	
	7294,744	7237,003	74,09		
	7283,852				
	7069,14		69,57		
2	7185,71	7097,63		0,98	
	7038,04				
	7741,736			4,85	
3	7111,111	7256,478	352,199		
	6916,586				
4	7283,727			2,45	
	7441,86	7147,752	175,097		
	7017,544				
5	Fa	tion			
6	7430,249				
	7153,588	7413,133	205,26	2,77	
	7655,502				

Experiment	D (m/s)	<u></u> <i>D</i> (m/s)	σ (m/s)	Error (%)	
7	7007,217				
	6703,986	7074,313	333,16	4,71	
	7511,737				
	7261,637			0,32	
8	7218,132	7250,832	23,56		
	7272,727				
9	7361,873			0,47	
	7283,852	7313,49	34,5		
	7294,744				
10	7283,857			0,88	
	7272,727	7233,057	63,94		
	7142,857				
11	7135,806				
12	6818,027				
	7396,176	7241,98	303,47	4,19	
	7511,737				

Detonation velocity - Laser Fibers Signals

 $\overline{D} = 7322,657 \pm 4,49 m/s$

$$\% \ error = \frac{\overline{D}}{\sigma} \times 100 = 0,06$$

Detonation velocity - Laser Fibers Signals

Experiment	D (m/s)	D (m/s)	σ (m/s)	Error (%)			
1	6886,815						
	6906,316						
	12972,69						
2	3750,02						
	3108,776						
3	20253,17						
4	5251,549						
	6722,689						
5	Failed detonation						
	7630,966						
6	7317,162	7472,966	128,12	1,71			
	7470,771						

Experiment	D (m/s)	<i>D</i> ̄ (m/s)	σ (m/s)	Error (%)	
7	7228,829				
	6926,407	7076,541	123,47	1,74	
	7074,387				
	7261,637			0,37	
8	7328,155	7294,845	27,16		
	7294,744				
	7373,272				
9	7058,657	7214,821	128,45	1,78	
	7212,535				
	7328,155				
10	7317,162	7322,657	4,49	0,06	
	7322,654				
11	7339,45				
	7228,829	7283,999	45,16	0,62	
	7283,719				
12	7121,746				
	3619,91				

Influence of using needles

Experiment 4

Detonation velocity - Influence of using needles

Experiment	D (m/s)	<u></u> <i>D</i> (m/s)	σ (m/s)	Error (%)	Experiment	D (m/s)	\overline{D} (m/s)	σ (m/s)	Error (%)
1	7132,413					7007,217			
	7294,744	7237,003	74,09	1,02	7	6703,986	7074,313	333,16	4,71
	7283,852					7511,737			
	7069,14					7261,637			
2	7185,71	7097,63	69,57	0,98	8	7218,132	7250,832	23,56	0,32
	7038,04					7272,727			
	7741,736					7361,873			
3	7111,111	7256,478	352,199	4,85	9	7283,852	7313,49	34,5	0,47
	6916,586					7294,744			
	7283,727					7283,857			
4	7441,86	7147,752	175,097	2,45	10	7272,727	7233,057	63,94	0,88
	7017,544	,				7142,857			
5		Failed	_		11	7135,806			
6	7430,249					6818,027			
	7153,588	7413,133	205,26	2,77	12	7396,176	7241,98	303,47	4,19
	7655,502	1				7511,737			

The use of needles on open fibers increase the precision of the results

Coordination between laser and open fibers signals

Detonation Front

Spectrometric Analysis

470nm standardized

Spectrometric Analysis

Spectrometric Analysis

Detonation Products – thermal radiation

Summary

- It was proved that:
 - The laser lights saturate the sensors, as well as the detonation light.
 - The fibers, when transversally, just receive light when they break, otherwise the interruption of laser light would not be so drastic.
 - With filters is possible to determine precisely the breaking time and identify the different radiations: from the laser and from the detonation
 - It is possible to determine precisely the time when the fiber breaks without modulation
 - The use of the sharper filters improve the falling down of the signal, avoiding undesirable peaks very near to it
 - The use of filters avoids the signal saturation
 - The signals of silica fibers with bigger diameter (200 μm) have the same behavior (saturation) as PMMA fibers (250 μm)

Summary

- The detonation velocity was achieved with very good accuracy. With open fibers the errors were always below 5% and, with lasers, always below 2%.
- The use of needles, on open fibers, increase the precision of the measurements.
- It was possible to have an idea about the behavior of the detonation front.
- The spectroscopic analysis showed it is possible to distinguish the radiation of the detonation products from the radiation of the reaction zone
- The expectations about the future work is to measure the detonation pressure

Thank you very much for your attention ③

Questions?

