Experimental Metrology And Techniques For Sub-millimeter Optical Observation Of Detonation Reaction Phenomena And Performance Evaluation Of Crystalline Explosives

Igor Plaksin⁺, <u>Luis Rodrigues</u>, Svyatoslav Plaksin, Ricardo Mendes, José Campos, José Baranda and José Góis

ADAI – Association for the Development of Industrial Aerodynamics
 DEM – Department of Mechanical Engineering - University of Coimbra
 LEDAP – Laboratory of Energetics and Detonics
 ONR – Office of Naval Research, Science & Technology – DON USA

XIII INTERNATIONAL SYMPOSIUM ON EXPLOSIVE PRODUCTION OF NEW MATERIALS: Science, Technology, Business and Innovations

20-24 June 2016 - COIMBRA, Portugal

Igor Evgenievich Plaksin 1954 – 2016

1. Experimental Technique Overview

- *Multi-Fiber Optical Probe* (MFOP)
 - Multi-Mode PMMA Fiber Optic Array
 - Spatial Resolution: 250μm
- High-Speed Electronic Streak Camera (ESC)
 - Model: Thomson TSN 506 N
 - Temporal Resolution: ~1ns
- +15 Test Setups / Configurations

- 1. Experimental Technique Overview
 - Products:
 - Resolution of Reaction Radiation Fields
 - Hotspots, Localizations and Irregularities
 - Resolution of Induced Peak Pressure Fields in Inert Media
 - Correlation Between Reaction Intensity and Induced Pressure
 - Detonation Front Topography
 - Curvature
 - Smoothness / Roughness
 - Resolution of Local Detonation Velocity (D) Perturbations
 - Detonation Extinction Critical Diameter
 - Shock-to-Detonation Transition (SDT), etc...

2. Experimental Setups / Configurations Examples

2.1. Single Crystal Reaction

2. Experimental Setups / Configurations Examples

2.1. Single Crystal Reaction

2.1.1. Two-Plane Observation

2. Experimental Setups / Configurations Examples

2.1. Single Crystal Reaction

2.1.1. Two-Plane Observation

7

2. Experimental Setups / Configurations Examples

2.1. Single Crystal Reaction

2.1.2. Single-Plane Observation (w/ 3 Crystals)

2. Experimental Setups / Configurations Examples

2.1. Single Crystal Reaction

2.1.3. Panoramic Observation

2. Experimental Setups / Configurations Examples

2.1. Single Crystal Reaction

2.1.3. Panoramic Observation

2. Experimental Setups / Configurations Examples

2. Experimental Setups / Configurations Examples

2.2. Long Charge Tests

Streak Record (Photochronogram)

2. Experimental Setups / Configurations Examples

2.2. Long Charge Tests

Streak Record (Photochronogram)

I. Plaksin†, L. Rodrigues, S. Plaksin, R. Mendes, J. Campos, J. Baranda, J. Góis

13

2. Experimental Setups / Configurations Examples

2.2. Long Charge Tests

2. Experimental Setups / Configurations Examples

2. Experimental Setups / Configurations Examples

2.2. Long Charge Tests

2. Experimental Setups / Configurations Examples

2.2. Long Charge Tests

Long Charge Test (LCT) RDX 93.0 / 7.0 wt. HTPB

2. Experimental Setups / Configurations Examples

2.2. Long Charge Tests

Long Charge Test (LCT) RDX 93.0 / 7.0 wt. HTPB

2. Experimental Setups / Configurations Examples

2.2. Long Charge Tests

Long Charge Test (LCT) RDX 93.0 / 7.0 wt. HTPB

19

2. Experimental Setups / Configurations Examples

2.2. Long Charge Tests

ρ ₀ (RS-PBX) (g/cm³)	1.572
D (mm/µs)	7.51
ρ ₀ (Kapton) (g/cm³)	1.414

D = 7.51 mm/µs

Radiation Intensity [%]

Pressure in PBX [GPa]

I. Plaksin†, L. Rodrigues, S. Plaksin, R. Mendes, J. Campos, J. Baranda, J. Góis

20

2. Experimental Setups / Configurations Examples 2.2. Long Charge Tests

D = 7.79 mm/µs	
$ ho_0$ (Kapton) (g/cm ³)	1.414
D (mm/µs)	7.79
ρ ₀ (PBX-Ref) (g/cm³)	1.54

LCT_2015.11.19_PBX-Ref_MFOP-Us

2. Experimental Setups / Configurations Examples

2.2. Long Charge Tests

Witness Plate (Copper Insert) Surface Analysis

2. Experimental Setups / Configurations Examples

2.2. Long Charge Tests

Witness Plate (Copper Insert) Surface Analysis

2. Experimental Setups / Configurations Examples

2.2. Long Charge Tests

Witness Plate (Copper Insert) Surface Analysis

2. Experimental Setups / Configurations Examples

2.2. Multi-Sample Tests

2. Experimental Setups / Configurations Examples

2.4. Wedge Tests

2. Experimental Setups / Configurations Examples

2.4. Wedge Tests – Shock-To-Detonation Transition

2. Experimental Setups / Configurations Examples

2.5. Detonation Extinction Diameter Tests (Conical Failure Tests)

- 2. Experimental Setups / Configurations Examples
 - 2.5. Detonation Extinction Diameter Tests (Conical Failure Tests)

2. Experimental Setups / Configurations Examples

2. Experimental Setups / Configurations Examples

2.6. Mushroom Tests

31

2. Experimental Setups / Configurations Examples

2.6. Mushroom Tests

2. Experimental Setups / Configurations Examples

2.6. Mushroom Tests

2. Experimental Setups / Configurations Examples

2.6. Mushroom Tests

2. Experimental Setups / Configurations Examples

2.6. Mushroom Tests

2. Experimental Setups / Configurations Examples2.6. Mushroom Tests

2. Experimental Setups / Configurations Examples2.6. Mushroom Tests

2. Experimental Setups / Configurations Examples

2.7. Shock Input Calibration Tests

2. Experimental Setups / Configurations Examples

2.7. Shock Input Calibration Tests

2. Experimental Setups / Configurations Examples

2.7. Shock Input Calibration Tests

DEM

I. Plaksin†, L. Rodrigues, S. Plaksin, R. Mendes, J. Campos, J. Baranda, J. Góis

40

2. Experimental Setups / Configurations Examples

2.7. Shock Input Calibration Tests

41

3. Main Conclusions

- Non-ideal behaviour at sub-millimeter scales
- Classical Models not applicable
- Non-Steady State Detonation Propagation
- Perturbations of Detonation Velocity
- Detonation Propagates Non-Continuously (local reaction domains/cells and "hotspots")
- Evidence of Significcant Perturbations in Reaction Intensity and Induced Pressure Fields
- Detonation Front Roughness
- Non-uniform Acceleration of Liners
- Roughness Inprint on Witness Plates
- Implications for practical applications (explosive welding, shock compaction/sintering, shaped-charges, etc...)