

Explosive welding of aluminium and copper: effect of the base plate material

XIII International Symposium on Explosive Production of New Materials: Science, Technology, Business, and Innovations

Gustavo Senna Carvalho - PhD. Student at University of Coimbra

G. Carvalho, R. M. Leal, I. Galvão, R. Mendes, J. B. Ribeiro and A. Loureiro

Joining different materials

Joining different materials \rightarrow it's a necessity!

Joining by welding \rightarrow **<u>STRATEGIC</u>**

Copper - aluminium joining

Interesting joining → Copper and aluminium are two of the three most used metals on earth

Copper - Aluminium joining

Physical properties of Cu and Al with steel as reference (1.0)

	Copper	Aluminium
Melting temperature	0.7	0.4
Thermal expansion	1.5	2.1
Thermal conductivity	5.9	3.1

MATTHEWS, S. J., et al. (1997) Dissimilar Metals in "AWS Welding Handbook – Metals and Their Weldability" Cap 12. American Welding Society EUA.

Solid-state welding (EXW) for Cu-Al joining

EXW is a viable way to join this combination but it's not easy because of the formation of <u>brittle intermetallic phases</u> and defects related to <u>localized fusion</u>.

Possibility of localized fusion and some diffusion is almost inevitable in this process.

The diffusion issue

Formation of brittle intermetallic phases.

Harmful to the mechanical properties.

DRITS, M.E., BOCHVAR, N.R., GUZEI, L.S., LYSOVA, E.V., PADEZHNOVA, E.M., ROKHLIN, L.L., TURKINA, N.I., (1979) Cu-Al in "Binary and Multicomponent Copper-Base Systems" [in Russian], p.8. Ed. Nauka. Moscou, União Soviética.

Explosive Welding - EXW

Explosion welding is a solid-state process characterized by a high-velocity impact between two materials as the result of controlled detonation of an explosive.

Objectives

The purpose of this investigation was to compare welds with different base plate alloys and the same flyer alloy: a similar Cu-Cu weld and a dissimilar Cu-Al weld. Both partially overlapped.

Objectives

The purpose of this investigation was to compare welds with different base plate alloys and the same flyer alloy: a similar Cu-Cu weld and a dissimilar Cu-Al weld. Both partially overlapped.

For load transfer applications

Materials and Conditions

SAME WELD PARAMETERS

Explosive composition and density

Ammonium nitrate-based explosive emulsion + with hollow glass microspheres

DIFFERENT MATERIALS

Different base plates -

• Cu-DHP (C12200) \rightarrow Similar weld

AA 6082-T6 \rightarrow Dissimilar weld

INSTITUTO POLITÉCNICO DE LISBOA

Universidade de Coimbra

RESULTS

Similar: Copper \rightarrow Copper

Results – Interface analysis - Waves

Dissimilar: Copper \rightarrow Aluminium

No waves! Plane interface

Dissimilar: Copper \rightarrow Aluminium

Dissimilar: Copper \rightarrow Aluminium [SEM analysis]

Results – Interface analysis - Hardness

Distance to interface [mm]

17

The hardness increased for both samples, but it can be seen a slightly greater increase in for the Cu-flyer of the similar weld

Conclusions

- Was possible to joining both samples with the same parameters;
- Increase in hardness for both welds but a slightly greater increase in hardness for the Cu-flyer of the similar weld;
- Despite the same parameters, it was found different interface morphologies due differences on the base plate Yield Strength and density;
- Formation of intermetallic phases for the Cu-Al combination related with diffusion of copper to the aluminium plate.

UNIVERSIDADE DE COIMBRA

