

Comparative Tensile and Shear Strength of Explosion Clad Materials

Curtis Prothe, Christoph Hurley, John Banker DMC NobelClad

Stephen Liu, PhD Colorado School of Mines

© 2013 NobelClad. All rights reserved.

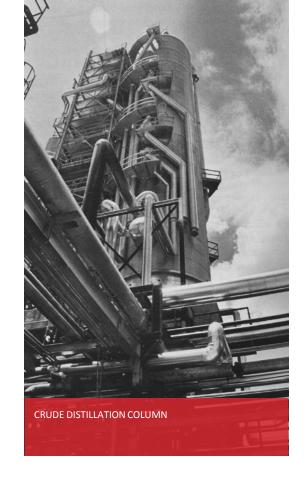
COMPARATIVE TENSILE AND SHEAR STRENGTH OF EXPLOSION CLAD MATERIALS

TOPICS

- Background Motivation for Test Program
- Experimental Design and Test Results
- Conclusions

Comparative Tensile and Shear Strength of Explosion Clad Materials Background – Motivation for test program

BACKGROUND – MOTIVATION FOR TEST PROGRAM


- Cladding metal thickness typically too thin for tensile test coupon
- Clad specifications do not require clad tensile testing or identify minimum strength requirements
- Shear testing is common, but clad tensile strength data limited

Shear Strength Specification Requirements								
Clad Specification	Materials	Minimum Shear Strength (Mpa)						
ASTM/ASME A263, A264, A265	Stainless Steel and Nickel Alloys	140						
ASTM B-432	Copper and Copper Alloy	85						
ASTM B-898	Reactive Metals (Ti, Zr)	137.9						

WELD INTERNALS DIRECT

- Direct Welding Attachment of Internals
 - In clad vessels, internal attachments to the vessel wall are frequently required
 - Many companies require clad strip-back (especially for "heavy" internals)
 - Lack of data to support design
 - Concerns with clad separation

ADVANTAGES AND PROPERTIES OF EXW

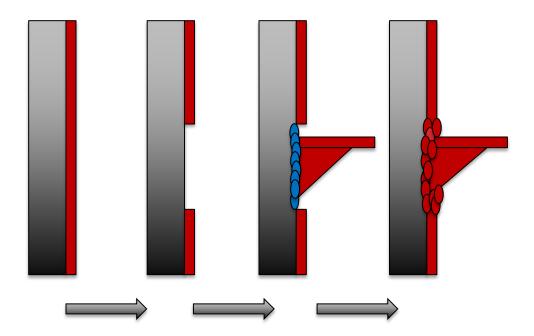
1. Bond Quality

Disbonding of **Roll Bonded Clad Plates** <u>after</u> forming and welding

X65Q 35.6 mm + Alloy 625 3.5 mm OD 39", 90°/5D induction bend

X65Q 31.1 mm + Alloy 625 3.1 mm OD 53" (caisson)

→ NobleClad.com

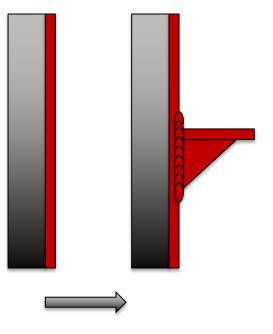

EXW for Pipe Applications

WELDING INTERNALS DIRECT

Attachment with Clad Strip-back

Process Steps:

- 1) Strip back cladding
- 2) Inspect
- Weld attachment to steel base metal (dissimilar metal weld)
- 4) Inspect
- 5) Complete CRA weld overlay
- 6) Inspect



WELDING INTERNALS DIRECT

Direct Attachment with NobelClad EXW Clad

Process Steps:

- Weld attachment directly to cladding metal
- 2) Inspect

Direct Attachment

- Reduces cost \$\$\$
- Less time in shop
- No dilution or dissimilar metal welding
- Improves design flexibility

WELD INTERNALS DIRECT

- Direct Welding Attachment of Internals
 - Requires reliable, high strength cladding
 - Testing program initiated by NobelClad to investigate clad tensile strength

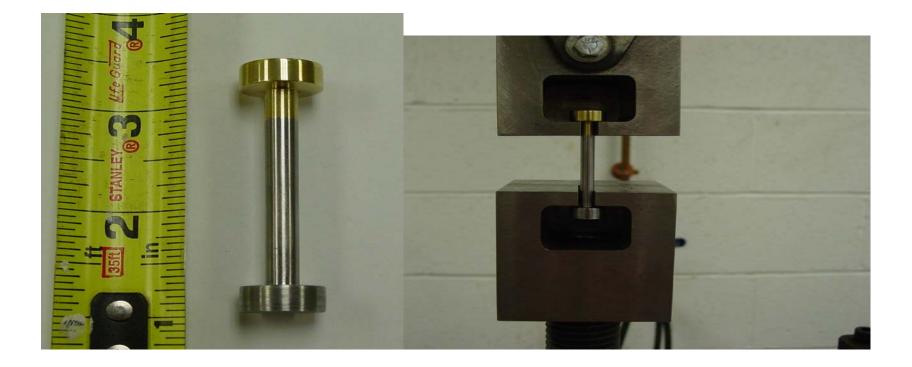
CRUDE DISTILLATION COLUMN (Photo courtesy of Dacro Industries)

Comparative Tensile and Shear Strength of Explosion Clad Materials

Experimental Design and Test Results

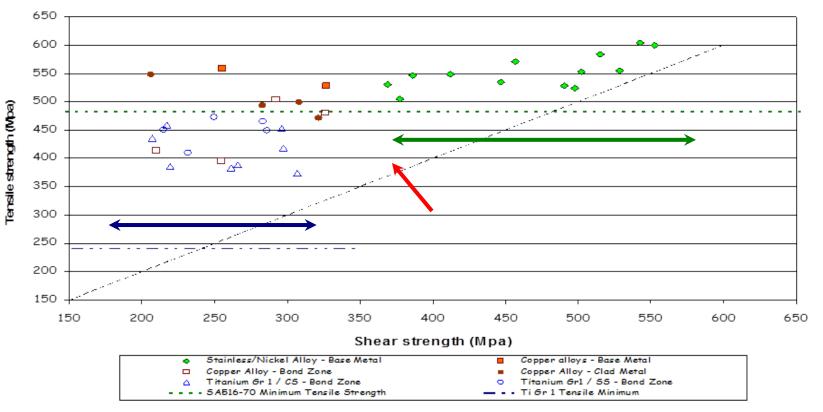
EXPERIMENTAL DESIGN AND TEST RESULTS

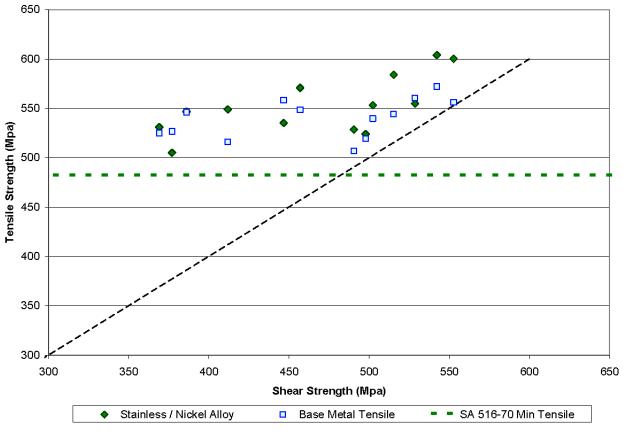
- Phase I
 - Testing of a broad range of explosion clad production materials
 - Clad tensile strength is compared to the shear strength, and the cladding and base metal properties.
- Phase II describes a second series of tests focused on
 - Materials that are typical for oil & gas applications
 - Covers testing of coupons that simulate in-service conditions (welded coupons, SPWHT, elevated temperature testing, cantilever loading of welded attachment).



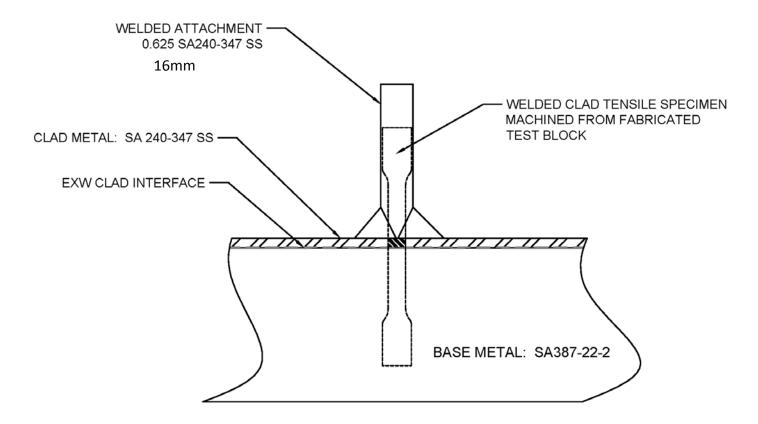
- Test material selected from NobelClad production plates
 - Cladding metal thickness>= 9.5mm
 - Heat treatment = production plate HT
- Tests machined from the same test block for direct comparison
 - Shear
 - Sub-size Clad Tensile (6.4mm gauge diameter)
 - Base Metal Tensile

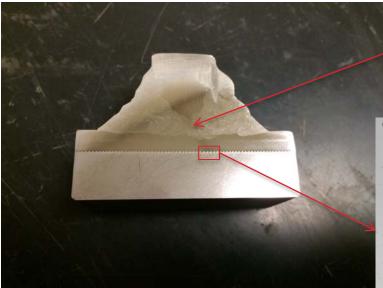
Clad Test Materials								
Cladding Metals	Base Metals							
Stainless Steels / Nickel Alloys: 304L, 316L, 410S, Alloy 400, 2205, 2507 Duplex SS	SA 516-70 Carbon Steel							
Copper Alloys: Naval Brass, 70-30 CuNi	SA 516-70 Carbon Steel							
Titanium: Grade 1, 11, 17	SA 516-70 Carbon Steel SA 266-4 Carbon Steel Forging SA 240-304L and 316L SS							



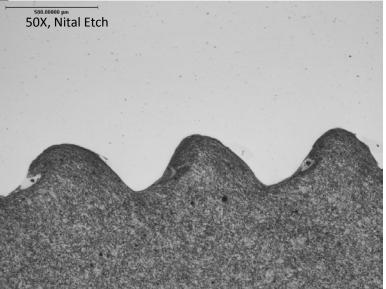


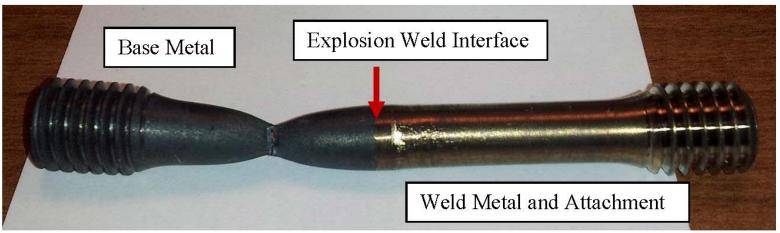
SHEAR STRENGTH VS. TENSILE STRENGTH


 \otimes



- Covers testing focused on typical oil & gas materials and conditions
- Clad Tensile Testing
 - SA387-22-2, SA516-70 base metal
 - SA240-317L, -347 clad metals
 - 4.8mm cladding metal and welded test coupons
 - Elevated temperature testing (RT to 650°C)
 - Multiple cycles of SPWHT, step cooling heat treatments
 - Evaluation of Tensile Strength and HAZ with reduced cladder thickness
- Cantilever loading of welded attachment
- Tensile testing with simulated non-bond




SA240-347 Clad SA387-22-2 Base Full penetration weld of attachment No change in steel structure at bond interface

 \otimes

- Clad tensile testing
 - Fractures in base metal

Test Temperature: 454°C (850°F)

 \rightarrow NobleClad.com

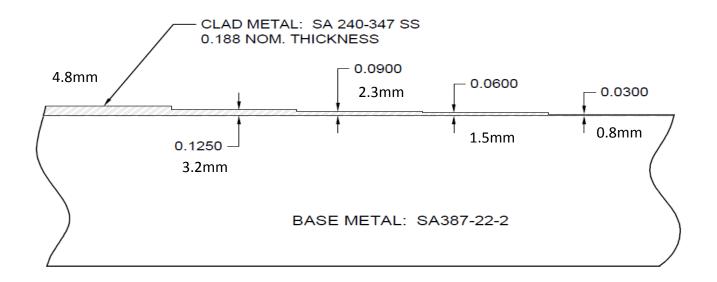
Clad Tensile Testing (Welded Test Coupons)

RD13-0018

Base	Clad	Condition	Sample ID	Test Temperature (*F)	Tensile	Yield	% Elong	%R.A.	Locat ion of Fracture
			A1-1		78.1	48.6	15.0	35.1	base
			A 1-2	Room Temperature	76.7	50.2	17.0	39.9	base
			A 1-3		77.7	49.3	14.4	33.6	base
			A2-1		64.5	32.1	24.1	79.1	base
			A2-2	50 0	64.9	32.3	25.4	79.6	base
		As-Clad,	A2-3		64	34	25.5	79.8	base
		As-Weld ed	A3-1		56.5	31.1	19.7	49.1	base
			A3-2	850	56.9	28.8	18:3	50.1	base
	SA 240-317L, 0.187" nom.		A3-3		56.5	35.0	17.6	44.9	base
SA516-70.			A4-1	100 0	42.0	27.0	16.2	43.3	base
3.250" nom.			A4-2		42.3	26.8	17.9	44.6	base
thickness	thick ness		A4-3		42.2	27.3	15.7	419	base
			B1-1	Room Temperature	76.6	51.0	17.7	40.4	base
			B 1-2		77.3	48.0	17.7	36.1	base
		As Clad + SPWHT 1100ºF, 120 mln. Heat ing and cooling rat es per U CS 56	B 1-3		76.5	47.1	17.0	34.4	base
			B2-1		55.6	26.7	19.7	45.0	base
			B2-2	850	55.4	29.5	2 0.4	46.0	base
			B2-3		56.9	31.1	19.6	43.6	base
			B3-1	100 0	40.9	26.4	19.6	44.0	base
			B3-2		412	26.2	20.1	43.6	base
			B3-3		414	27.4	19.6	42.7	base

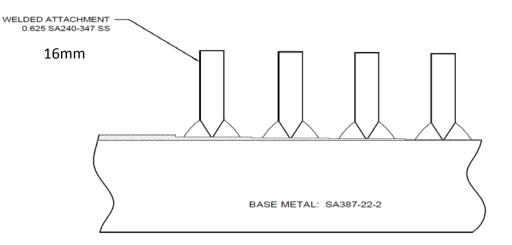
Clad Tensile Testing (Welded Test Coupons) RD13-0018									
Base	Clad	Condition	SampleID	Test Temperature ('F)	Tensile	Yield	%Elong	%R.A.	Location of Fracture
			CI-1		79.8	57.6	23.6	80.3	base
			C1-2	Room Temperature	80.1	58.7	8.7 23.1 79.6	base	
			C1-3		80.1	57.8 23.	23.5	79.6	base
		As Clad + Post Clad	C2-1		62.3	42.4	22.2	77.5	base
SA387-22-2		SRHT	C2-2	850	62.4	417 22.9	77.7	base	
Q+T,	SA240-347, 0.187nom.	11751F, 120 min. (HT performed on	C2-3		62.4	40.4	22.8	78.9	base
2.990" nom. Thickness	thickness	plate - no further HT	C3-1		54.5	39.0	22.6	83.5	base
		required), As-Welded	C3-2	100 0	54.6	39.0	22.4	82.9	base
			C3-3		54.3	42.5 22	22.9	83.3	base
			C4-1	120 0	39.3	33.2	29.0	89.9	base
			C4-2		39.4	317	28.8	90.3	base
			C4-3		sample damaged during preparation - not tested				

Clad Tensile Testing (Welded Test Coupons) RD13-0018									
Base	Clad	Condition	SampleID	Test Temperature ('F)	Tensile	Yield	%Elong	%R.A.	Location of Fracture
			D1-1		78.4	55.6	24.0	79.7	base
			D1-2	Room Temperature	78.5	55.3	23.8	78.8	base
			D1-3		78.5	55.3 24	24.6	79.5	base
	SA 240-347, 0.187nom.	+ 1Cycle SPWHT 12 74뚜, 500 min.	D2-1	850	60.5	39.0	21.1	77.0	base
04.007.00.0			D2-2		60.4	40.1	21.7	77.9	base
SA387-22-2 Q+T,			D2-3		61.1	40.0	21.8	78.1	base
2.990" nom. Thickness	thickness	Heating and cooling rates per UCS56	D3-1		52.1	39.9	22.9 23.9	82.4	base
morness		Tates per 00300	D3-2	100 0	52.4	38.2		82.7	base
			D3-3		52.4		23.6	83.3	base
			D4-1		37.6		29.6	90.4	base
			D4-2	120 0	37.7	312	118	29.1	weld
			D4-3		37.5	310	17.8	41.9	weld



Clad Tensile Testing (Welded Test Coupons) RD13-0018									
Base	Clad	Condition	SampleID	Test Temperature ('F)	Tensile	Yield	%Elong	%RA.	Location of Fracture
			EI-I		60.0	39.3	21.0	78.1	base
		+3 Cycle SPWHT	El-2	850	60.0	36.7	20.9	20.9 77.7 base	base
		1274°F, 500 min. (1500	EI-3		60.1	37.4	20.5 77.3 base	base	
		min. total) Heating and cooling rates per UCS	E2-1		36.3	29.1	28.4	91.0	base
		56	E2-2	120 0	36.5	36.5 29.0 29.1 8	88.8	base	
SA387-22-2 Q+T,	SA240-347,		E2-3		36.5	29.7	28.7	90.6	base
2.990" nom.	0.187nom. thickness		F1-1		58.2	38.4	20.9		base
Thickness		+ 1Cycle SPW HT	F1-2	850	58.5	43.1	22.3		base
		1274°F, 500 min. Heating and cooling	F1-3		57.9	57.9 38.5	20.3	78.0	base
		rates per UCS 56	F2-1	120 0	37.1	313	29.9	90.9	base
		+ SA-387 S83.2 Step Cooling	F2-2		35.3	28	30.6	90.4	base
			F2-3		37.3	30.9	28.6	90.7	base

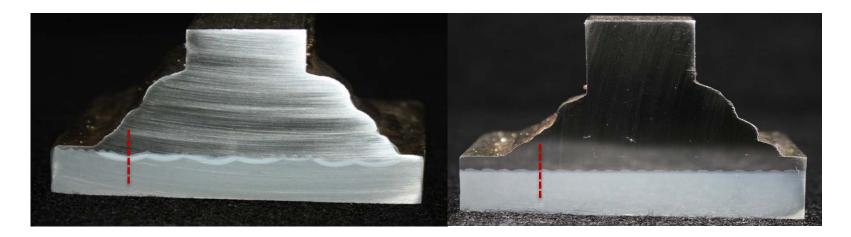
EVALUATION OF TENSILE STRENGTH AND HAZ WITH REDUCED CLADDER THICKNESS


- Evaluate minimum clad thickness required for direct attachment welding without affecting the base metal
- Demonstrate tensile properties without PWHT

TEST SET UP AND TENSILE RESULTS

- 4.8mm Clad: 593 MPa
- 3.2mm Clad: 589 MPa
- 2.3mm Clad: 598 MPa
- 1.5mm Clad: 590 MPa
- 0.8mm Clad: 610 MPa

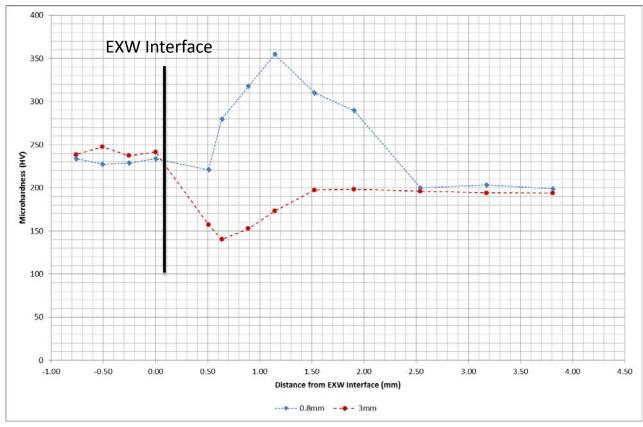
• All failure locations were in the SA 387-22-2 base metal



WELDING PARAMETERS

- Process: GMAW
- Shielding Gas: 90% He, 7.5% Ar, 2.5% Co2
- Filler Metal: ER347
- Current: 181 Amps
- Voltage: 21 Volts
- Travel Speed: 10 IPM
- Wire Feed Speed: 350 IPM
- Heat Input: 22,806 Joules per inch

EVALUATION OF HAZ

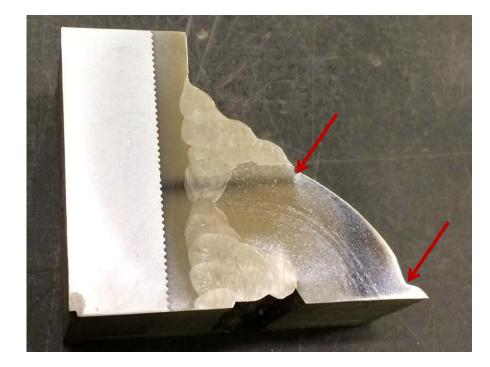


0.8mm Clad Thickness

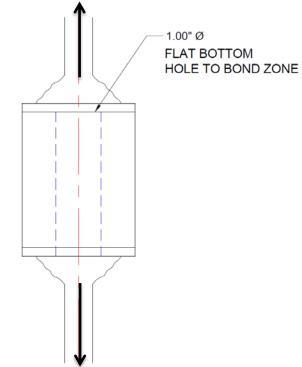
3.2mm Clad Thickness

EVALUATION OF HAZ

CANTILEVER LOADING OF WELDED ATTACHMENT


- Application mock-up testing
 - Bending moment on a welded attachment.
 - Loaded to failure on the production press.
 - After loading , samples cut for metallographic examination and evaluation.

CANTILEVER LOADING OF WELDED ATTACHMENT


Cracking in attachment weld No clad separation or disbond

TENSILE TESTING WITH SIMULATED NON-BOND IN CLADDING

- Application mock-up testing
 - 25mm flat bottom hole drilled to the interface to simulate a 25mm non-bond.



TENSILE TESTING WITH SIMULATED NON-BOND IN CLADDING

Load at Break = 525 kN No disbond at simulated non-bond

COMPARATIVE TENSILE AND SHEAR STRENGTH OF EXPLOSION CLAD MATERIALS

Conclusions

- The clad tensile strength exceeded the shear strength for 100% of the materials tested
- The through thickness tensile strength of explosion welded titanium alloy and copper alloy clad are well above the cladding metal minimum tensile strengths
- For explosion welded stainless steel and nickel alloy clad, the tensile strength of explosion weld
 - Exceeded the tensile strength of the steel base metal and
 - Meets the base metal minimum tensile strength requirement.
 - Tensile strength maintained for thinner cladding metal, welded test coupons, with various heat treatment conditions, and at elevated temperature
 - Mock-up testing did not produce any clad separation or disbonding

COMPARATIVE TENSILE AND SHEAR STRENGTH OF EXPLOSION CLAD MATERIALS

Conclusions

• Tensile strength data of NobelClad EXW material supports direct attachment to the clad surface

Thank you Curtis Prothe 1138 Industrial Park Drive Mount Braddock, PA 15465

cprothe@nobelclad.com