

Joint Institute for High Temperatures, Semenov Institute of Chemical Physics Russian Academy of Sciences, Moscow

MECHANOACTIVATION AND DETONATION OF AMMONIUM PERCHLORATE – NANOALUMINUM MIXTURE

A.Yu. Dolgoborodov, A.A. Shevchenko, V.G. Kirilenko, M. A. Brazhnikov

SHOCK INDUCED CHEMICAL REACTIONS IN OXIDIZER-FUEL MIXTURES

Composition (wt.)	ρ _{max} , g/cc	Reaction	Q, kcal/kg	$Q \cdot \rho \cdot 10^{-3}$, kcal/m ³
Al/S, 36/64	2.26	$2AI + 3S = AI_2S_3$	1150	2600
Al/MoO ₃ , 27/73	3.91	$2AI + MoO_3 = AI_2O_3 + Mo$	1120	4380
Al/Fe ₂ O ₃ , 25.5/74.5	4.23	$2Al + Fe_2O_3 = Al_2O_3 + 2Fe$	950	4020
Al/W0 ₃ , 19/81	5.45	$2AI + WO_3 = AI_2O_3 + W$	710	3870
Al/CuO, 18.5/81.5	5.13	$2AI + 3CuO = Al_2O_3 + 3Cu$	970	4980
Al/BaO ₂ , 17.5/82.5	4.32	$4Al + 3BaO_2 = 2Al_2O_3 + 3Ba$	560	2420
Al/CrO ₃ , 35/65	2.76	$2AI + CrO_3 = AI_2O_3 + Cr$	1680	4640
Al/(-C ₂ F ₄ -), 26.5/73.5	2.31	$4Al + 3(-C_2F_4-) = 4AlF_3 + 6C$	2070	4780
Zr/(-C ₂ F ₄ -), 47.5/52.5	3.20	$Zr + (-C_2F_4-) = ZrF_4 + 2C$	1380	4420
Zr/MoO ₃ , 48.5/51.5	5.41	$3Zr + 2MoO_3 = 3ZrO_2 + 2Mo$	770	4170
Ti/(-C ₂ F ₄ -), 32.5/67.5	2.63	$Ti + (-C_2F_4-) = TiF_4 + 2C$	1350	3550
Ti/MoO ₃ , 33.5/66.5	4.63	$3\text{Ti} + 2\text{MoO}_3 = 3\text{TiO}_2 + 2\text{Mo}$	740	3430
Mg/(-C ₂ F ₄ -), 32.5/67.5	2.02	$2Mg + (-C_2F_4-) = 2MgF_2 + 2C$	2280	4610
Mg/Fe ₂ O ₃ , 31.5/68.5	3.21	$3Mg + Fe_2O_3 = 3MgO + 2Fe$	1010	3240
Mg/MoO ₃ ,33.5/66.5	2.99	$3Mg + MoO_3 = 3MgO + Mo$	1170	3500
Mg/TiO ₂ , 38/62	2.74	$2Mg + TiO_2 = 2MgO + Ti$	490	1340
Mg/SiO ₂ , 44.5/55.5	2.15	$2Mg + SiO_2 = 2MgO + Si$	670	1440

2

Auminium

ASD-4 (<d>~ 7 μm)

ASD-6 <d> \sim 3,6 μm

 $nAl < d > \sim 100 nm$

- 100μm ππ2-μεχ BSE PP-2 <L> ~ 70 * 1 μm

Al - PAP-2 <L> ~ 30 * 1 μm

Al(N4), (S=2.7 m²/g) <L> ~0.5*21,3 μ m

Initial Powders (oxidizers)

Teflon (F4-PN)	Teflon (FORUM)	MoO ₃	Nano-MoO ₃	
50μ	2 name			
<pre><d1> ~ 10 - 300 µm (Most of particles) <d2> ~ 1.5 - 2.5 µm</d2></d1></pre>	<d> ~ 0.6 μm</d>	<u></u>	Preliminary activation - <d> ~ 60 nm</d>	

- Tested charges were prepared from the initial components by mixing in vibromill with consequent pressurizing.
- Mechanochemical activation was also used for mixture manufacturing

Shock induced reaction in Al/S

 $W = 3.61 \text{ km/s} - \text{CCl}_4$

The reaction quickly decays in dense samples under powerful initiating

Detonation-like process in Al/S mixture

Fast reaction propagation due to formation of hot spots and jets of reaction products

To accelerate the solid state reactions necessary to increase the effective surface area of contact of the reactants. Mechanochemical activation is one of the ways to increase the reactivity of the oxidizer fuel mixture

Fading mode in low dense charges

Mechanoactivated Energetic Composites (MAEC)

Formation of Mechanoactivated Energetic Composites Me/Teflon

Obtained composites consists of flake particles of Teflon matrix with Metal inclusions

MAEC AI/MoO₃

AI –PAP-2

Nano MoO₃

Self-accelerating combustion regime with transition to explosion obtained for low-dense mixtures Al/MoO₃ For usual mixtures burning rate **u** < 1 m/s Mechanoactivated mixtures **u** > 400 m/s

Detonation-like processes in MAECs Al, Mg + Teflon, MoO₃

Detonation - supersonic process with constant velocity (sound speed C< 100 m/s, D = 800-1300 m/s)

Velocity of propagation of shock induced reaction in different MAECs:

1 – Mg/MoO₃ 34/66 (ρ_0 =1.13 g/cc, ϵ =62%); 2 – Al/MoO₃ 32/68 (ρ_0 =1.43 g/cc, ϵ =62%); 3 – Mg/Teflon 35/65 (ρ_0 =0.49 g/cc, ϵ =75%); 4 – Al/Teflon 27/73 (ρ_0 =0.59 g/cc, ϵ =74%)

Materials Tested

Thermal effect of reactions Si, AI + PP, AP

Composition, Stoichiometric ratio	ρ _{max} , g/cc	Reaction	Q, kcal/kg	Q·ρ·10 ⁻³ , kcal/m ³
Si/KClO ₄ 28.8/71.2	2.46	$2Si + KCIO_4 = 2SiO_2 + KCI$	2240	5515
Si/NH ₄ ClO ₄ 35/65	2.07	$9Si + 4 NH_4CIO_4 = SiCI_4(g) + 8SiO_2(s) + 2N_2 + 8H_2$	2230	4612
AI/KCIO ₄ 34.2/65.8	2.58	$8AI + 3KCIO_4 = 4AI_2O_3 + 3KCI(s)$	2544	6560
AI/NH ₄ CIO ₄ 27.7/72.3	2.11	$10AI + 6NH_4CIO_4 = 5AI_2O_3$ $+ 6HCI + 9H_2O + 3N_2$	2385	5032

Deflagration to Detonation transition MAEC Si + NH₄ClO₄ (30 min)

DDT in stainless steel tube (10 mm dia) L = 2 cm stady-state regime D = 1900 m/s nano-Si/NH₄ClO₄ (<d> = 60 - 100 nm) 29/71 density = 0.48 g/cc (24% TMD)

Ni-Cr wire initiation

D = 1900 m/s

Materials Tested

Al – PP-2 <L>70*1-5 μm

NH₄ClO₄ PA1. <d>~ 200 μm

NH₄ClO₄ PA2. <d>~ 20 μm

Al (8 m²/g) (GNIIChTEOS) <d> ~ 260 nm two fraction 3-5 μm and 100-300 nm Alex (Tomsk) <d> ~ 100-200 nm nAl (INEP) <d> ~ 100 nm

MAEC AI+AP

Al(8)+AP

Alex+AP+3%Fluoroplast-42

Deflagration to Detonation Transition DDT

AI/NH₄CIO₄

metal tube Ø 10 mm length 120 MM charge with electric gauges or light fibers porosity of charges – $\epsilon = 80-82\%$

AI/AP 20/80 AI(8)

 $t_a = 35 \text{ min}, \quad D = 2380 \text{ m/s}$ steel tube

 $t_a = 20 \text{ min}, \quad D = 2310 \text{ m/s}$ duralumin tube

 $t_a = 40 \text{ min}, \quad D = 2300 \text{ m/s}$ duralumin tube

DDT AI/AP 20/80 AI(8) $\epsilon = 80-82\%$

DDT AI/AP 20/80 $\epsilon = 80-82\%$

Mechanical sensitivity

BB	Р _{кр} , ГПа
Lead aside	0,38 ± 0,03
BTNEN	0,79 ± 0,02
НМХ	0,99 ± 0,03
AI/AP (20/80)	0,61 ± 0,02

P_{cr} - critical pressure corresponding to the transition from mechanical destruction of charges in the shell of PMMA without an explosion to destruction with explosion

(method of the collapsing shell) [Schetinin V.G. // Physics of combustion and explosion, 1999, V. 35]

Detonation in pressed charges

AI/AP different densities and diameters

Detonation velocity vs relative charge density

AI (PP-2)/AP 20/80 (charge diameter d = 25 mm)

Detonation velocity vs relative charge density

AI(PP-2), Alex/AP and nAI/AP 20/80 d = 25 mm

Detonation velocity vs reciprocal charge diameter (1/d)

AI/AP 20/80 (charge density 0.75 and 0.9 TMD)

Conclusion

- The results of work allow to consider a method of mechanoactivation as a way to control detonation velocity of explosive compositions on the base of oxidizer-fuel mixtures
- Sharing nano-scale components and mechanical activation can significantly improve the detonation ability of oxidizer - fuel mixtures
- Mechanoactivated energetic composites on the basis of aluminum and perchlorates can be of interest as perspective energetic materials for new initiating and incendiary devices with increased requirements on rate of energy realize

Burning velocity of Al/KClO₄ (30/70) composite

Pressed charges, $\emptyset = 12 \text{ mm}$, porosity = 10-15%

