ИССЛЕДОВАНИЕ ПОВЕРХНОСТИ СТАЛЬНЫХ МАТЕРИАЛОВ ПОСЛЕ СОУДАРЕНИЯ ПОТОКА ВЫСОКОСКОРОСТНЫХ ЧАСТИЦ

Е.В. Петров

Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук, Черноголовка, Россия petrow-ewgen@mail.ru

При исследовании материалов, обработанных высокоскоростным потоком частиц, основное внимание обращают на приповерхностную зону, где происходят основные процессы. Соударение потока частиц с металлической преградой приводит к остановке большей их части в приповерхностной зоне и образованию на поверхности преграды покрытия из остановившихся частиц.

В качестве стальной преграды выбраны образцы из стали марки Ст.3 диаметром 20 мм и высотой 30 мм. В качестве материала порошка выступал порошок вольфрама, с размером частиц 5–20 мкм (66 %), и порошок никеля с размером частиц 6–16 мкм (68 %).

Схема проведения эксперимента была следующей: образец помещался в направляющий канал, сверху которого располагалось кольцо с порошковым материалом насыпной плотностью массой 3 г. На кольцо устанавливался заряд взрывчатого вещества с детонатором. При детонации ударная волна и продукты взрыва разгоняли порошок и вместе с ним воздействовали на исследуемый образец.

При исследовании поверхности стальных преград показано, что после воздействия потока частиц вольфрама и никеля на поверхности происходит формирование покрытия толщиной в пределах от 10 мкм до 30 мкм и образование переходной зоны (рис. 1).

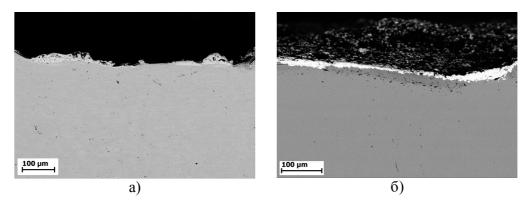


Рис. 1. Фотографии микрошлифов поверхности образцов после обработки потоком частиц: а) никеля; б) вольфрама.

При исследовании с помощью электронного микроскопа приповерхностной зоны образцов, обработанных высокоскоростным потоком частиц никеля, были обнаружены фазовые изменения в структуре стали (рис. 2a) и область распределения никеля в приповерхностной зоне (рис. 2б). Данные энерго-дисперсионного анализа приповерхностной зоны стальной преграды представлены в таблице 1.

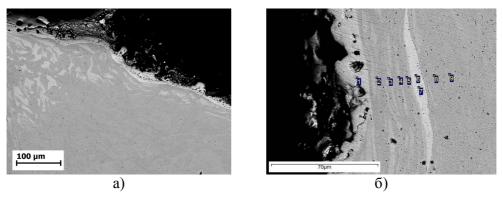


Рис. 2. Фотографии микрошлифов поверхности образцов после обработки потоком частиц никеля

Таблица 1. Энерго-дисперсионный анализ поверхностного слоя (рис. 26; масс. %)

Spectrum	1	2	3	4	5	6	7	8	9
С	37.6	30.7	30.8	29.5	28.0	29.4	28.6	25.9	23.8
Fe	9.5	69.3	69.2	70.5	71.9	3.6	3.8	74.1	76.2
Ni	52.9					66.9	67.5		

В приповерхностном слое образцов, обработанных потоком частиц вольфрама, на границе раздела фаз вольфрама и железа образуются глобулярные выделения, которые окружают частицы вольфрама (рис. 3). Это свидетельствует о протекании реакционной диффузии на межфазной границе с образованием интерметаллидных соединений на основе исходных компонентов. Особенностью данной структуры является своеобразная карбидная «бахрома» из глобулярных, близких к шаровидной форме дисперсных частиц карбида вольфрама по фазовой поверхности частиц вольфрама (рис. 5, точка 1). Причем, более мелкие частицы вольфрама покрыты карбидной «бахромой» в несколько слоев (рис. 5, точки 2 и 3). Необычно и выделение значительно более крупных карбидных глобулей в переохлажденном аустените (рис. 5, точки 4 и 5).

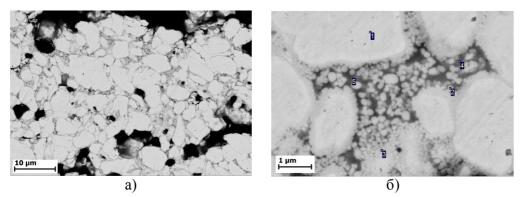


Рис. 3. Фотографии микрошлифов: а) слоя частиц вольфрама на поверхности образцов; б) кристаллы глобулярной формы по границам частиц вольфрама

Таким образом, показано, что соударение потока частиц никеля и вольфрама с преградой приводит к формированию покрытия из этих частиц. После соударения потока частиц никеля с поверхностью преграды обнаруживаются фазовые изменения в структуре стали. В результате соударения высокоскоростного потока частиц вольфрама с поверхностью стальной преграды формируется поверхностный слой из частиц вольфрама, представляющий собой композиционный материал, состоящий из вольфрама, железа и их интерметаллидного соединения. При реакционной диффузии на границе раздела фаз вольфрама и железа образуются интерметаллидные соединения в виде глобулярных выделений, которые окружают частицы вольфрама.

Исследование выполнено при финансовой поддержке $P\Phi\Phi U$ в рамках проекта $N\!\!\!=$ 15-08-00571 a.