На правах рукописи

Мазной Анатолий Сергеевич

ФОРМИРОВАНИЕ СТРУКТУРЫ ПОРИСТОСТИ МАТЕРИАЛОВ В ПРОЦЕССАХ САМОРАСПРОСТРАНЯЮЩЕГОСЯ ВЫСОКОТЕМПЕРАТУРНОГО СИНТЕЗА

Специальность 01.04.17 – Химическая физика, горение и взрыв, физика экстремальных состояний вещества

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата технических наук Работа выполнена на кафедре математической физики ФГБО ВПО «Национальный исследовательский Томский государственный университет» (ТГУ) и лаборатории физической активации отдела структурной макрокинетики ФГБУН Томский научный центр Сибирского отделения Российской академии наук (ТНЦ СО РАН)

Научный руководитель:	Кандидат физико-математических наук Кирдяшкин Александр Иванович			
Официальные оппоненты:	Доктор технических наук Лорян Вазген Эдвардович			
	Доктор физико-математических наук, профессор Амосов Александр Петрович			
Ведущая организация:	Национальный исследовательский технологический университет «МИСиС» (НИТУ МИСиС)			

Защита диссертации состоится «12» сентября 2012 г. в 10⁰⁰ ч. На заседании диссертационного совета Д 002.092.01 при Учреждении Российской академии наук Институте структурной макрокинетики и проблем материаловедения РАН по адресу: 142432, г. Черноголовка, Московской области, ул. Ак. Осипьяна, д.8.

С диссертацией можно ознакомиться в библиотеке Института структурной макрокинетики и проблем материаловедения РАН.

Автореферат разослан «____» ____ 2012 г.

Учёный секретарь Диссертационного совета Д. 002.092.01 к.ф.-м.н.

И.С. Гордополова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Самораспространяющийся высокотемпературный синтез (СВС) является энергоэффективным методом получения тугоплавких неорганических материалов. Метод СВС даёт возможность синтезировать широкую номенклатуру карбидов, боридов, нитридов, силицидов и других неорганических материалов в порошковом состоянии. Также актуально использование метода СВС для прямого синтеза пористых применяемых проницаемых материалов (ППM), В качестве носителей катализаторов, фильтров, горелок и пр.

Известно, что структура пористости определяет основные ΠΠΜ. эксплуатационные характеристики как такие газожидкостная проницаемость, прочностные характеристики, теплопроводность и пр. К прогнозирования настоящему времени возможности И направленного регулирования структуры пористости материалов, получаемых в процессах горения, изучены недостаточно полно. Последнее значительно ограничивает практическое применение метода СВС. Анализ состояния исследования в предметной области показывает необходимость получения дополнительных экспериментальных данных по влиянию режимов синтеза и исходных параметров реакционной смеси на структуру пористости продукта реакции, что позволит уточнить закономерности и механизм формирования поровой структуры в процессе СВС.

Актуальность работы подтверждается выполнением её в соответствии с тематическими планами НИОКР ТНЦ СО РАН, в рамках программ и проектов отделения химии и наук о материалах, РФФИ, Фонда содействия развитию малых форм предприятий в научно-технической сфере: **1.** НИОКР «Разработка методик исследования морфологии гетерофазных материалов для систем автоматического металлографического анализа». Государственный контракт № 7058р/9654 от 01.07.2009. Государственный контракт № 8690р/13129 от 14.01.2011; 2. Междисциплинарный интеграционный проект СО РАН № 78 керамических металлокерамических «Использование И материалов. получаемых методом CBC, в энергопреобразующих устройствах» 2009-2011 г.; 3. Конкурсный проект СО РАН V.36.4.4 «Фундаментальные исследования неизотермических процессов конденсированных систем с твёрдофазными продуктами реакции с использованием физических воздействий» 2009-2011 г. 4. Конкурсный проект СО РАН V.37.1.2 «Совершенствование технологий высокотемпературного И модифицирования синтеза композиционных материалов на основе силицидов, алюминидов и тугоплавких соединений» 2009-2010 г.; **5.** Проект РФФИ № 11-03-98011-р сибирь а «Разработка фундаментальных основ ресурсосберегающей технологии получения блочных каталитических систем для эффективных процессов химической переработки газообразных углеводородов» 2011-2012 г.

<u>Цель работы.</u> Изучение характеристик структур пористости продуктов СВС и возможностей их направленного регулирования в процессах самораспространяющегося высокотемпературного синтеза.

Задачи исследования.

1. Разработать методику количественного металлографического анализа поровой структуры продуктов СВС;

2. Установить взаимосвязь различных тепловых режимов горения со структурой пористости продуктов СВС;

3. Установить влияние параметров исходной реакционной смеси на структуру пористости продуктов СВС;

4. Разработать методику варьирования параметров пористости продуктов СВС с применением стадии предварительного формирования поровой структуры методом шликерного вспенивания.

<u>Объекты исследования.</u> Основными объектами исследования были системы Ni+Al, Ti+Si+Al₂O₃, Fe+TiO₃+Al+Si+C, Ti+B+Cu, Si+Al+Al₂O₃+N₂.

<u>Научная новизна работы.</u>

1. Разработана металлографическая методика определения количественных характеристик мезо- и субмезоструктуры порового пространства материалов со сложными структурами пористости, основанная на анализе стереометрических параметров сечений пор и элементов скелета, получаемых при компьютерной обработке фотоизображений шлифов исследуемых материалов;

2. Определены особенности структур пористости продуктов, получаемых в процессе безгазового горения с участием расплавов. Установлена взаимосвязь нестационарных режимов послойного горения, а также режима теплового CBC. поровой структурой продуктов Показаны взрыва С условия возникновения градиентных, анизотропных И периодических структур пористости. Установлено подобие структур мезо- и субмезоуровней пористости сформированных продуктов синтеза, при низком уровне примесных газовыделений в процессе СВС;

3. На примере системы (Ti + 26мас.% Si)+Al₂O₃ исследованы зависимости параметров поровой структуры продуктов CBC от степени разбавления инертным веществом, размера частиц исходных порошковых реагентов и относительной плотности образцов;

4. Разработана методика варьирования параметров поровой структуры продуктов СВС методом предварительного шликерного вспенивания исходной порошковой смеси.

Практическая значимость работы.

1. Предложены новые методики количественного описания порового пространства материалов со сложными структурами пористости, позволяющие реконструировать с плоского разреза исследуемого материала его реальные характеристики. Методики реализованы в программном обеспечении (ГК №7058р/9654, №8690р/13129), позволяющем проводить экспресс оценку эксплуатационных свойств, а также всесторонне описывать параметры мезо- и субмезоструктуры порового пространства пористых проницаемых материалов;

2. Полученные в работе экспериментальные данные о взаимосвязи структуры пористости с исходными параметрами гетерогенной среды и условиями СВ-синтеза расширяют возможности направленного регулирования

эксплуатационных характеристик пористых СВС-материалов для применения последних в качестве фильтров, катализаторов и горелок;

3. Предложена методика прямого CB-синтеза пористых Ni-Al материалов, адаптированных для использования в качестве металлической основы твердооксидных топливных элементов (ТОТЭ). На новой Ni-Al основе создана опытная топливная ячейка, обеспечивающая генерацию электрического тока с плотностью мощности 400 мBt/см²;

4. Предложена методика варьирования параметров пористости материалов, получаемых в фильтрационном режиме CBC. Получены лабораторные образцы оксинитридных материалов состава $Si_{6-Z}Al_ZO_ZN_{8-Z}$ (композиции фаз с Z = 3 и Z = 1,31) общей пористостью $40 \div 75\%$, размером элементов скелета $250 \div 750$ мкм, размером поровых каналов $10 \div 200$ мкм, удельной поверхностью открытой пористости $4 \div 15$ мм⁻¹.

<u>Достоверность научных результатов работы.</u> Достоверность результатов обеспечена использованием современных аттестованных методов: рентгенофазовый анализ, растровая электронная микроскопия, методика измерения параметров пористости материалов и др. Исследование проводились с использованием следующего оборудования: микроскоп «CarlZeiss Axiovert 200M Mat», просвечивающий электронный микроскоп «Philips CM 30», рентгеновский дифрактометр «Shimadzu XRD 6000», микрорентгеноспектральный анализатор «Camebax Micro-Beam»; электронный дилатометр «DIL 402 PC/4»; растровый электронный микроскоп «Philips SEM 515».

Апробация работы. Основные результаты работы докладывались и обсуждались на следующих симпозиумах и конференциях: XI Symposium (International) on Self-Propagating High Temperature Synthesis (2011), Anavyssos, Attica, Greece; VII Всероссийской научной конференции «Фундаментальные и прикладные проблемы современной механики» (2011), г. Томск; 16th – 17th International Scientific and Practical Conference of Students, Post-graduates and Young Scientists «Modern technique and technologies» (2010-2011), Tomsk; Международной конференции по физической мезомеханике, компьютерному конструированию и разработке новых материалов (2009), г. Томск; Научном «Фундаментальные семинаре И прикладные проблемы самораспространяющегося высокотемпературного синтеза» (2009), г. Томск; Международной школе-конференции молодых ученых «Физика и химия наноматериалов» (2009), г. Томск; V-VI Всероссийских конференциях молодых учёных «Физика и химия высокоэнергетических систем» (2009-2010), г.Томск; Всероссийской научной школе-конференции молодых ученых «Катализ: от науки к промышленности» (2011), г. Томск и др.

Основные положения, выносимые на защиту.

1. Новые методики комплексного металлографического анализа пористых проницаемых СВС-материалов со сложными структурами пористости;

2. Положение о взаимосвязи теплового режима СВС со структурой пористости синтезированного продукта;

3. Положение о формировании структуры пористости продуктов СВС в зависимости от исходных параметров реакционных систем;

4. Новая методика варьирования параметров пористости продуктов CBC, основанная на использовании стадии предварительного формирования поровой структуры методом шликерного вспенивания.

<u>Публикации</u>. Основные научные результаты диссертации опубликованы в 20 работах, из них 3 статьи в журналах, входящих в перечень ВАК РФ, 2 статьи в трудах международных симпозиумов и 15 тезисов российских и международных конференций.

Личный вклад автора. При получении результатов, представленных в диссертационной работе, автором сделан определяющий вклад, включающий в себя участие в постановке задач, разработку методик экспериментальных исследований. реализацию программ вычислений для персональных компьютеров, проведение основных экспериментальных исследований, обработку полученных результатов, формулировку выводов и написание статей.

<u>Структура и объём работы.</u> Диссертационная работа состоит из введения, 4 глав, выводов и библиографического списка. Общий объём работы составляет 143 страницы, включая 49 рисунков, 11 таблиц и библиографического списка, включающего 129 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во <u>Введении</u> обоснована актуальность, сформулированы цели и задачи исследования, указана новизна и практическая ценность полученных результатов, сформулированы основные положения, выносимые на защиту диссертации.

В <u>*первой главе*</u> представлен краткий литературный обзор научных работ по тематике самораспространяющегося высокотемпературного синтеза пористых материалов.

Во *второй главе* даётся описание экспериментальных стендов и методик, применяемых для изучения процессов горения гетерогенных систем.

Процесс СВС исследовался в порошковых реакционных системах: Ni-Al; Ni-Al-ГД (ГД – газифицирующаяся добавка: CaCo₃, MgCO₃); Ti-B-Cu; Fe-TiO₃-Al-Si-C, Ti-Si-Al₂O₃, Si+Al+Al₂O₃+N₂ с использованием в качестве компонентов порошков Ni – ПНК1-Л5, УТ-4; Al – АСД-4, АСД-6; Ti – ПТЭМ; В – бор аморфный чёрный (99,0 % основного вещества); Cu – ПМ-1; Si – КР1; С – ГЛ4; FeTiO₃ – природный ильменитовый концентрат Туганского месторождения, Al₂O₃ химической чистоты. Выбор систем обусловлен возможностями получения жаростойких, коррозионностойких, каталитически активных пористых материалов. Компоненты смешивались в необходимых соотношениях И формовались в цилиндрические образцы диаметром 20 ÷ 40 мм, высотой 1 ÷ 40 мм путём прессования смеси в цилиндрической прессформе. Для обеспечения минимального количества газовыделений легколетучих примесей в процессе синтеза (менее 0,05 ÷ 0,1 мг на 1 г. исходной смеси) реакционные смеси подвергались предварительной термообработке в вакууме (давление воздуха 0,1 Па) при температуре до 900 К. СВ-синтез реакционных систем проводился в среде аргона при давлении 10⁵ Па, в среде азота при давлениях до 15 МПа. Инициирование горения проводилось с помощью спирали накаливания и поджигающего состава Ti + 31% В (здесь и далее указаны массовые доли вещества). Для организации теплового взрыва образцы нагревались с постоянной скоростью 50 К/мин.

Максимальная температура реакции определялась термопарами BP5/BP20 с размером спая 100 мкм. Температурное поле волны СВС анализировалось специального с применением метода динамической пирометрии основе обработки на данных видеозаписи процесса на высокоскоростную видеокамеру «MotionProX3». Для визуализации структурообразования в волне горения использовалась подсветка поверхности образца излучением лазера. Скорость движения фронта реакции измерялась с помощью видеосъемки процесса. Структуры пористости исследовались с применением металлографического анализа плоского разреза образцов на микроскопе «CarlZeiss Axiovert 200 M-Mat», анализаторе изображений «ImageScope ColorM», а также с помощью разработанных в диссертации методик. Комплексные исследования свойств получаемых материалов фазовый (микроструктура, состав, химический состав, температурный коэффициент линейного расширения и пр.) проводилось на оборудовании Томского материаловедческого центра коллективного пользования.

В <u>третьей главе</u> представлены разработанные металлографические методики, позволяющие количественно выявлять характеристики порового пространства пористых проницаемых материалов со сложными структурами пористости, включающими *мезоструктуру*, образованную пористыми агрегатами и межагрегатными порами, и *субмезоструктуру*, образованную отдельными частицами и замкнутыми порами.

Методики основаны на анализе количественных характеристик сечений пор и элементов скелета, наблюдаемых на фотоизображениях шлифов исследуемых материалов. На фотографии выбирается область интереса – связанная область, внутри которой проводятся исследования. Внутри области интереса выбираются объекты интереса – связанные области пикселов, для которых выполнилось условие принадлежности яркости К заданному Предложено считать, что изображения пор без включений диапазону. элементов скелета есть сечения замкнутых пор, а поры с включениями элементов скелета – участки открытой пористости материала. Для полного анализа необходимо знание площади области интереса S₀ и определения следующих параметров о каждом объекте интереса: 1. Диаметр эквивалентный D_{eq}; 2. Количество включений N_p; 3. Площадь объекта интереса, без учета площади включений S; 4. Периметр объекта интереса P; 5. Площадь включений S_h ; 6. Полная площадь объекта S_s ; 7. Максимальный диаметр Фере (МДФ) объекта интереса F_{max} ; 8. Угол наклона МДФ (относительно оси ОХ фотоизображения) α ; 9. Диаметр Фере ортогональный МДФ $F_{ort max}$.

Предлагается определять следующие параметры мезоструктуры диаметр поровых каналов D_{Can} , средний диаметр сечений элементов скелета D_{El} и удельную поверхность открытой пористости S_{Surf} материала. D_{Can} находится из представления объёма открытой пористости в виде канала цилиндрической формы, площадь поверхность которого равна площади поверхности открытой пористости проницаемого материала. D_{El} определяется как среднеарифметическое значение размеров площадей сечений элементов скелета. S_{Surf} определяется как отношение суммы периметров сечений пор с включениями и периметров сечений элементов скелета к площади области интереса So. Пусть Ns – количество сечений элементов скелета в области интереса, $P_i^{(P)}$, $\tilde{S}_i^{(P)}$ – периметр и площадь *i*-того сечения поры с включениями (без учёта площади включений), $P_j^{(S)}$, $S_j^{(S)}$ – периметр и площадь *j*-того сечения элемента скелета, і и ј – количество сечений пор с включениями и элементов скелета соответственно, тогда:

$$D_{El} = 2\sqrt{\frac{\sum_{j} S_{j}^{(S)}}{N_{S} \cdot \pi}}$$
(1)

$$S_{Surf} = \frac{\sum_{i}^{j} P_{i}^{(1)} + \sum_{j}^{j} P_{j}^{(3)}}{S_{0}}$$
(2)

$$D_{Can} = \frac{1}{4} \left[\sum_{i} P_{i}^{(P)} + \sum_{j} P_{j}^{(S)} - \Delta - \left(\left[\sum_{i} P_{i}^{(P)} + \sum_{j} P_{j}^{(S)} - \Delta \right]^{2} - 16 \cdot \sum_{i} S_{i}^{(P)} \right)^{0.5} \right]$$
(3)

где $\Delta = -P_i^{\max} \cdot \sum_j S_j^{(S)} / \left[\sum_j S_j^{(S)} + 1,75 \cdot S_0 \right] -$ поправочный коэффициент, необходимый в связи с двойным подсчётом анализаторами изображений периметров

элементов скелета на границе области интереса, здесь P_i^{max} – периметр сечения открытой поры, имеющей максимальную площадь в выборке.

С целью определения числа замкнутых пор и параметров распределения их размеров (диаметров) по геометрическому ряду в объёме материала проведена модернизация метода Салтыкова. Она обусловлена необходимостью расширения числа изучаемых размерных групп и варьирования значения знаменателя прогрессии геометрического ряда диаметров. Суть обработки данных по модернизированной методике состоит в следующем. Пусть S_0 – площадь области интереса, *i* – число размерных групп, n_i – количества сечений закрытых пор соответствующих размерных групп, D_1 –диаметр первой размерной группы, равный диаметру D_{eq} сечения поры максимального размера, D_i – диаметр *i*-той размерной группы, μ – параметр структуры, Z – знаменатель геометрической прогрессии убывающего ряда, тогда количество пор в единичном объёме исследуемого материала *i*-той размерной группы ряда N_i

$$N_i = \frac{1}{\mu \cdot S_0 \cdot D_i} \sum_{j=1}^i \theta_j \cdot n_{1+i-j}$$
(4)

где:

$$D_i = K_i \cdot D_1; \ K_i = (10^{-Z})^{i-1}$$
(5)

$$\theta_1 = \frac{100}{\alpha_1}, \quad \theta_2 = -\frac{\alpha_2 \cdot \theta_1}{\alpha_1}, \quad i \ge 3 \quad \Rightarrow \quad \theta_i = -\frac{\alpha_i \cdot \theta_1}{\alpha_1} - \sum_{j=3}^i \frac{\alpha_{2+i-j} \cdot \theta_{j-1}}{\alpha_1} \tag{6}$$

$$\alpha_{i} = \left| \sqrt{1 - K_{i}^{2}} - \sqrt{1 - K_{i+1}^{2}} \right| \cdot 100$$
(7)

Общее количество пор в единичном объеме исследуемого материала вычисляется по следующей формуле:

$$N = \sum_{i} N_i \tag{8}$$

Средний размер замкнутых пор рассчитывается по формуле:

$$D_P = \frac{\sum_{i} D_i \cdot N_i}{N} \tag{9}$$

Для материалов с матричной структурой пористости $\mu = 1$. Если материал имеет каркасную структуру пористости, то $\mu = \sum S_s^{\Im n.C\kappa} / S_0$ и формула 8 характеризует количество пор в единичном объёме каркаса пористого материала.

Параметры анизотропии оцениваются по гистограмме ориентации структурных элементов α . Также определяется фактор удлинения структурных элементов $f_L = F_{ortmax}/F_{max}$.

Корректность предложенных методик проверена на эталонном образце, изготовленном из насыпки сферических стальных шаров одинакового размера. Показано, что величины, полученные в результате металлографической обработки шлифа эталонного образца по формулам 1-9, удовлетворительно совпадают с его расчетными характеристиками. Исследована воспроизводимость параметров поровой структуры продуктов CBC – показано, что для изотропных материалов воспроизводимый результат достигается при исследовании параметров структуры одного произвольного шлифа.

В <u>четвёртой главе</u> представлены результаты исследований влияния условий организации СВС на структуру пористости продуктов реакции.

В первом разделе 4 главы описана взаимосвязь различных тепловых режимов горения со структурой пористости продуктов СВС. Как показали продукты СВС, обладающие достаточной исследования, прочностью $(\delta_{cm} > 10 \div 15 \text{МПа})$, удаётся изготавливать при частичном плавлении исходных компонентов в волне горения и обеспечении максимальной температуры процесса ниже точки плавления конечного продукта реакции. Для устранения макроскопических трещин, вызванных давлением летучих примесей, газифицирующихся в волне, требуется ограничение линейной скорости горения в пределах 10 ÷ 20 мм/с. Указанные условия реализуются при протекании CBC в различных нестационарных режимах: сцинтилляционного, многоочагового и спинового горения (рис.1).

Рисунок 1 – Кадры скоростной видеосъёмки нестационарных режимов СВС. Часть *а* – сцинтилляционный режим, Часть *б* – многоочаговый режим, Часть *в* – спиновый режим Примечание – 1 – сцинтилляционный очаг. 2, 3 – хаотичная и спиновая миниволна. Тёмной стрелкой указано общее направление горения.

Тепловой режим горения оказывает специфическое влияние на поровую структуру материалов, получаемых при безгазовом горении конденсированных систем. Так, на рисунке 2 представлены типичные структуры пористости, нестационарных режимах (таблица 1). полученные в различных При реализации сцинтилляционного режима продукт СВ-синтеза характеризуется капельными структурами с крупными элементами скелета (рис.2 *a*); подобные структуры наблюдались при реализации сцинтилляционного режима в системах Ni-Al-ГД, Co-Al-ГД, Ti-Si-ГД и пр. (здесь ГД – газифицирующаяся добавка CaCO₃, MgCO₃ или др.). При реализации многоочагового режима горения структура СВС-продукта содержит щелевидные дисковые поры (рис.2 б); аналогичные структуры реализуются при многоочаговом горении систем FeTiO₃-Al-Al₂O₃, FeO-Al-Al₂O₃, NiO-Al-Al₂O₃ и др. Продукты синтеза, полученные в спиновом режиме СВС, характеризуются периодической структурой пористости (рис.2 в); реализация подобных слоистых структур наблюдалась при спиновом горении систем Ti-B-Cu, Ni-Al, Ni-Al-Cr и др.

Рисунок 2 – Изображения продольных сечений продуктов синтеза, полученных в нестационарных режимах СВС. Части *а*, *б*, *в*, *г*, *д* – материалы №1, №2, №3, №4, №5 соответственно (см. таб. №1)

Примечание — Тёмной стрелкой указано общее направление горения. Светлыми стрелками указано место прохождения хаотичной (б) и спиновой (в) миниволн. В части г дано изображение поперечного сечения материала.

№	Рисунок	Исходный состав	TBO	Δ	Режим	Состав
			шихты		горения	продуктов
1	Рис. 2 а	(Ni + 18%Al)+2%ГД	Нет	0,45	сцинтил.	NiAl, Ni ₃ Al
2	Рис. 2 б	(FeTiO ₃ +30%Al)+30%Si	Нет	0,51	многооч.	Al ₂ O ₃ , сплав
		+25%SiO ₂ +4%C				Ti-Fe-Si-C
3	Рис. 2 в	(Ti+31,1%B)+70%Cu	Дa	0,45	спин.	TiB ₂ , Cu
4	Рис. 2 г	Ni + 20%Al	Дa	0,53	многооч.	NiAl, Ni ₃ Al
5	Рис. 2 д	(Ni + 25%Al)+2%ГД	Нет	0,44	сцинтил.	NiAl, Ni ₃ Al

Таблица 1 – Описание используемых для анализа продуктов СВС

Примечание – Здесь «ТВО» – термовакуумная обработка

Согласно данным пирометрии, температура изучаемых реакционных систем внутри сцинтилляционных очагов, хаотичных и спиновых миниволн кратковременно (10 ÷ 20 мс) на 100÷300 К превышает температуру близлежащих участков волны горения. Последнее объясняется эффектами энтальпии локального выделения избытка реакционных систем. обусловленными тепло-диффузионной и гидродинамической неустойчивостью волновых экзотермических реакций в конденсированных средах. Данные динамического мониторинга морфологии поверхности образца в процессе СВС, полученные с помощью скоростной микровидеосъёмки, показали, что в волне горения первичные продукты возникают в виде микрокапель размером 50÷200 мкм. Поскольку наблюдаемая температура в волне горения превышает точку плавления исходных компонентов (Al, Si, Ni и др.), формирование микрокапель коалесценции частиц объясняется процессом смеси под действием поверхностных сил расплава. Температура за волной ниже точки плавления наиболее тугоплавких продуктов реакции (NiAl, TiB₂, Al₂O₃ и др.), поэтому рост размера капель за счёт коалесценции ограничен характерным временем СВС. В дальнейшем микрокапли сливаются между собой и образуют пористый каркас конечного СВС-продукта.

Установлено, что при низкой относительной плотности исходной смеси $(\Delta = 0, 4 \div 0, 45)$ скелет продукта синтеза представляет собой систему спаянных капель, окружённых сетью открытых пор (каркасная структура пористости). Замкнутые поры локализуются внутри элементов скелета. В случае $\Delta > 0,5$ мезоструктура продуктов приближается к структуре пены (матричная структура пористости), где открытые поры образованны нарушениями сплошности перегородок замкнутых пор материального скелета.

Согласно данных металлографического анализа, для продуктов СВС характерно изменение параметров поровой структуры в направлении от центра к периферии образца. В центре наблюдаются (рис.3) максимальные значения D_{Can} , D_{El} , ω (ω – доля закрытой пористости в общей пористости материала), а вклад в закрытую пористость пор максимального размера почти на порядок больше, чем в периферийном слое материала (рис.5 – кр. 4.1, 4.2).

Рисунок 3 – Распределения характеристик поровой структуры материала №4 в зависимости от расстояния от центра образца *R*. Часть (*a*): кривая $1 - D_{El}$, кривая $2 - D_{Can}$, кривая $3 - S_{Surf}$ Часть (*б*): кривая $1 - \omega$, кривая 2 - N.

Наблюдаемая градиентность объясняется влиянием теплопотерь в процессе CBC через внешнюю поверхность образца. Как показывают термопарные измерения, различия температуры в центре и на периферии образца достигают 50 ÷ 100 К и более. Таким образом, для получения поровой структуры наружных слоёв отличной от структуры исходного порошкового образца необходимо минимизировать теплопотери при CBC либо заложить большие размеры изделия для последующего удаления наружного слоя.

Полученные в режиме спинового горения продукты СВС характеризуются периодической структурой в виде чередующихся слоев, имеющих различную структуру пористости. Наименьшие величины D_{Can}, D_{El}, ω , N характерны для зон прохождения спинового очага (мелкопористый слой), а для крупнопористого слоя, сформированного низкотемпературной зоной спиновой миниволны, характерно увеличение указанных величин (рис.4). Субмезоструктура продуктов характеризуется появлением в крупнопористом слое замкнутых пор размером более 40 мкм (рис.5 – кр. 3.1 и 3.2).

Рисунок 4 – Распределения характеристик поровой структуры материала №3 вдоль оси образца X. Часть (a): кривая $1 - D_{El}$, кривая $2 - D_{Can}$, кривая $3 - S_{Surf}$. Часть (б): кривая $1 - \omega$, кривая 2 - N.

Доля закрытой пористости продуктов CBC существенно зависит от начальной плотности образцов и находится в интервале $\omega = 5 \div 30\%$. Нижняя

граница интервала соответствует $\Delta = 0.40 \div 0.45$, верхняя – $\Delta = 0.50 \div 0.60$. При СВС с минимальным количеством примесных газовыделений максимальное количество замкнутых пор имеет размер $2 \div 20$ мкм (рис.5 *a* – кр. 3, 4). По порядку величины этот размер близок к размеру частиц исходных компонентов. Меньшая часть пор, представляющая основной объем закрытой пористости, обладает большим размером (рис. 5 б). Вероятно, первичные замкнутые поры формируются в волне горения в процессе коалесценции на базе газовых промежутков между частицами смеси. В дальнейшем, часть первичных пор давлением газов. расширяется внутренним Так. при существенном газовыделении наблюдается укрупнение замкнутых пор (рис. 5 – кр. 1, 2).

Размер открытых пор продуктов синтеза укладывается в интервал $D_{Can} = 10 \div 1000$ мкм и значительно зависит от режима синтеза. Открытые поры в виде вытянутых миниполостей (материал №2) образуются в местах распространения хаотичных миниволн, где происходит локальное плавление, усадка и капиллярное перераспределение расплава вещества. Наибольшие значения D_{Can} и D_{El} реализуются при сцинтилляционном режиме горения низкоплотных смесей (материалы №1, 5). Большие значения размера порового канала обеспечивают высокую газовую проницаемость, а крупные элементы повышенные механическую прочность И теплопроводность скелета продуктов синтеза.

Рисунок 5 – Распределения замкнутых пор по размерам (часть *a*) и по вкладам в пористость скелета (часть *б*). Кривые 1 – материал №1. Кривые 2 – материал №2. Кривые 3 – материал №3 (3.1 и 3.2 – крупнопористый и мелкопористый слой образца соответственно). Кривые 4 – материал №4 (4.1 и 4.2 – центральная и периферийная часть поперечного разреза образца соответственно).

Структура продуктов СВС обладает анизотропией. Согласно рис.6, значительное количество структурных элементов имеет вытянутую форму с фактором удлинения $f_L = 0.4 \div 0.8$ и ориентацией практически по нормали к общему направлению горения. Анизотропия структур может быть обусловлена преимущественным спеканием (коалесценцией) частиц вдоль слоя реакционной зоны волны горения, где система имеет минимальную вязкость. В системах с существенным газовыделением (материал №1, 2, 5) анизотропия замкнутых пор и элементов скелета (рис.6 а – кр. 1, 2) значительно отличаются. Большинство замкнутых пор имеет $f_L = 0,8 \div 1$, а элементы скелета имеют $f_L = 0,4 \div 0,8$; наблюдаются несовпадения ориентации структурных элементов (рис.6 б – определенных случаях происходит формирование столбчатой кр. 2). В структуры ($\alpha = 90^{\circ}$) скелета и замкнутых пор (рис.6 δ – кр. 1, 3, 5), что, вероятно, вызвано перегруппировкой капельных образований вещества вдоль направления горения под действием микропотоков газа расплавов. И Перспективной областью применения материалов с анизотропной структурой является использование в системах фильтрации жидкости и газов, где фильтрация потока организована в направлении вдоль ориентации пор.

Рисунок 6 – Гистограммы факторов удлинений f_L (часть *a*) и ориентации α (часть δ) замкнутых пор и элементов скелета. Кривые 1 – материал №1 (1.1 и 1.2 – значения для замкнутых пор и элементов скелета соответственно). Кривые 2 – материал №2 (2.1 и 2.2 – значения для замкнутых пор и элементов скелета соответственно). Кривые 3 – материал №2. Кривые 4 – материал №4. Кривая 5 – материал №5.

Во втором **разделе** 4 главы на примере системы (Ti+26маc.%Si)+Al₂O₃ изучено влияние степени разбавления шихты термически инертным веществом (σ), размера частиц порошковых реагентов (r) и относительной плотности образца (Δ) на структуру пористости продуктов CBC. Компоненты

смешивались в соотношении $(100 - \sigma)(\text{Ti} + 26 \% \text{Si}) + \sigma$, где σ – процентная доля Al₂O₃. В реакционных смесях компоненты имели одинаковый фракционный состав. Использовались следующие фракции: $40 \div 50$ мкм (средний размер частиц r = 45 мкм), $63 \div 80$ мкм (r = 71,5 мкм), $80 \div 100$ мкм (r = 90 мкм), $160 \div 200$ мкм (r = 180 мкм). Варьирование относительной плотности проводилось путём формования смеси в прессформе механической нагрузкой до 280 МПа при постоянных величинах r = 180 мкм, $\sigma = 0\%$. Величина σ варьировалась при $\Delta \approx 0,59$, r = 45 мкм.

Измеренные величины максимальной температуры (T_C) и средней скорости горения (U_C) исследуемых порошковых смесей представлены на рис. 7. Данные рентгенофазового анализа показывают, что конечным продуктом реакции являются следующие фазы: Ti₅Si₃ (основная), Ti₂Si, TiSi, TiSi₂, Al₂O₃ (примесные). Поскольку $T_C < T_{\Pi\Pi}$ (Ti₅Si₃) = 2403 K, соединение Ti₅Si₃ может образовываться в волне горения только в твёрдом состоянии. Полученные экспериментальные зависимости T_C (σ , r, Δ) и U_C (σ , r, Δ) соответствует теоретическим представлениям о процессах горения гетерогенных систем, образующих конденсированные продукты реакции (рис.7).

На рис. 8 представлены зависимости параметров поровой структуры продуктов CBC от исходных параметров реакционной системы. Установлено, что средний размер замкнутых пор D_P (рис.8 – кр.1) увеличивается с ростом r, снижается с увеличением Δ и практически не зависит от σ . Размер каналов открытой пористости D_{Can} (рис.8 – кр.3) уменьшается с ростом σ и Δ . Для продуктов синтеза с $\Delta \approx 0,59$ размер канала D_{Can} примерно равен размеру частиц исходной порошковой смеси r. Таким образом, изменение размера частиц исходных компонентов обеспечивает возможность направленного регулирования параметров газо-гидродинамической проницаемости ППМ СВС.

Рисунок 8 – Зависимости D_P (кривые 1), D_{El} (кривые 2), D_{Can} (кривые 3), S_{Surf} (кривые 4) от степени разбавления (часть *a*), размера частиц порошковых компонентов (часть *б*) и относительной плотности образца (часть *в*) в системе (Ti+26%Si)+Al₂O₃

Примечание — значения D_{El} даны для структур с параметром $\omega < 50\%$.

Для малых значений r (рис.9 δ) характерно формирование матричных структур с параметром $\omega \ge 50\%$, которые, по-видимому, транслируются из структуры исходной реакционной системы. С ростом относительной плотности выше $\Delta \approx 0,59$ происходит резкое увеличение параметра ω до 90% (рис.9 ϵ). При разбавлении исходной смеси оксидом алюминия реализуются структуры каркасного типа с малой долей закрытой пористости ($\omega \approx 10\%$), что связанно с уменьшением T_C процесса (рис.7 a) и ограничением полноты коалесценции частиц за счёт увеличения вязкости вещества в волне горения.

Для оценки степени структурной конверсии продуктов CBC предлагается параметр η_S , характеризующий изменение величины удельной поверхности открытой пористости S_{Surf} продукта синтеза (рис.9 – кр.2) в сравнении с удельной поверхностью исходного порошкового образца. Пусть r – средний размер реагентов [мкм], тогда:

$$\eta_{S} = \left(1 - \frac{S_{Sufr} \cdot r}{6 \cdot 10^{3} \cdot \Delta}\right) * 100\%$$
(10)

Если $\eta_S \rightarrow 0\%$ – в процессе CBC сохраняется структура исходного образца за счёт точечного спекания элементов каркаса в местах контактов частиц исходных компонентов. Если $\eta_S \rightarrow 100\%$ – в процессе синтеза вещество сплавляется в литой спёк с параметром $\omega \rightarrow 100\%$. Так, для разбавленных систем из мелких порошков ($\sigma = 10\%$) – $\eta_S \approx 41\%$. Для низкоплотных систем из крупных порошков ($\Delta = 0,525$) – $\eta_S \approx 72\%$. Следовательно, в волне горения разбавленных смесей коалесцирует на порядок меньше частиц, чем при CB-синтезе в низкоплотных смесях крупных порошков.

Зависимости Рисунок 9 доли закрытой пористости ω (кривые 1), степени структурной конверсии η_S (кривые 2), **удельного** количества закрытых пор N (кривые 3) от степени разбавления (часть а), размера частиц порошковых компонентов (часть б) и относительной плотности образца (часть *в*) в системе (Ti+26%Si)+Al₂O₃.

Таким образом, при разработке СВС-технологии синтеза ППМ с высокими значениями S_{Surf} и низкими значениями D_{Can} необходимо использовать мелкие порошки реагентов, а также понижать энергетику системы за счёт разбавления реакционных смесей конечным продуктом реакции или термически инертной добавкой. организация мелкопористых структур возможна при Также смещении состава шихты В сторону избытка наиболее тугоплавкого компонента системы.

В третьем разделе данной главы на примере смеси Ni+10%Al рассматривались особенности поровой структуры продуктов теплового взрыва. Исходные реагенты реакции: Al – АСД-6, Ni – УТ-4. Шихта прессовалась в цилиндрические образцы размерами D = 20 мм, $H = 1 \div 2$ мм. Средняя величина пористости образцов варьировалась в интервале 35 ÷ 45%. Параметры теплового взрыва в зависимости от давления прессования: критическая температура взрыва $T_E = 820 \div 880$ К, максимальная температура взрывного разогрева $T_M = 1320 \div 1460$ K, время химического превращения $t_R = 0, 1 \div 0, 3$ с (рис.10 а) Продукт реакции представляет собой пористый проницаемый материал, состоящий из композиции фаз Ni₃Al, NiAl, Ni и практически полностью повторяющий геометрию исходного порошкового образца. Из металлографического анализа следует, что между торцами цилиндрического образца имеется пространственное распределение величин D_{El} , D_{Can} , S_{Surf} (рис.10 б). Последнее объясняется влиянием внешнего теплообмена образца в процессе СВС. Продукт синтеза характеризуется высокими значениями удельной поверхности открытой пористости поверхностных слоёв – S_{Surf} до 500 мм⁻¹ (степень структурной конверсии $\eta_s \approx 20\%$) и отсутствием анизотропии объектов структуры в объёме материала.

Рисунок 10 – Термограмма теплового взрыва состава Ni+10%Al (часть *a*); распределения характеристик структуры пористости продукта, синтезированного в режиме теплового взрыва (часть δ) – D_{El} (кривая 1), D_{Can} (кривая 2), S_{Surf} (кривая 3) Примечание – Здесь H есть расстояние от верхнего торца цилиндрического образца.

Полученный интерметаллидный мелкопористый материал адаптирован для использования в качестве подложки-основы (рис.11 *a*) твердооксидных топливных элементов (ТОТЭ). Последние являются электрохимическими генераторами, эффективно преобразующими химическую энергию взаимодействия водорода с кислородом в электрическую. На новой Ni-Al основе с использованием анода состава Ni+50%ZrO₂:Y₂O₃, YSZ электролита и LSM катода (где YSZ = $Zr_{0.86}Y_{0.14}$; LSM = $La_{0.8}Mn_{0.2}SrO_3$) создана опытная топливная ячейка (рис.11 *б*), обеспечивающая генерацию электрического тока удельной мощности 400 мBT/см² при 1073К и расходах воздуха 150 мл/мин, H₂ – 60 мл/мин.

В четвёртом разделе представлены результаты исследований возможности специальной организации поровой структуры продуктов СВС путём шликерного вспенивания реакционной системы. Предварительное структурообразование смесей проводилось путём затворения порошковой шихты водой с последующим нагревом шликера в разборных оснастках. В результате реакции гидратации алюминия ($H_2O + Al \rightarrow H_2\uparrow + Al(OH)_3 \cdot n H_2O$) происходит вспенивание шликера с образованием твёрдого высокопористого брикета. Изменяя режим нагрева и объём шликера можно варьировать общую пористость брикетов в диапазоне 40 ÷ 75%. Избыток воды удаляется обжигом в муфельной печи при температурах до 873 К.

СВ-синтез пористой оксинитридной керамики проводился в системе Si+Al+Al₂O₃+N₂; исходные компоненты реакции: кремний КР-1, алюминий АСД-4 и Al₂O₃ (средний размер частиц реагентов менее 10 мкм). Состав на синтез брикета балансировался сиалона $Si_4Al_2O_2N_6$. Водотвёрдое затворения шихты – 0,625. Шликер соотношение ДЛЯ заливался В цилиндрические формы размерами D = 40 мм, H = 80MM. Брикеты изготавливались нагревом шликера со скоростью 3 К/мин до 373 К в муфельной печи. СВ-синтез осуществлялся в режиме фильтрационного горения при давлении азота 10 ÷ 15 МПа.

Как показали исследования, в зависимости от пористости скорость горения брикета составляла $U_C = 1 \div 3$ мм/с с достижением максимальной температуры процесса $T_C = 1550 \div 1750$ К и степени азотирования продукта реакции $m = 0,7 \div 0,8$. Согласно данным РФА, основным продуктом синтеза является композиция фаз $Si_{4.69}Al_{1.31}O_{1.31}N_{6.69}$ и $Si_3Al_3O_3N_5$ (степень замещения Z = 1,31 и 3 соответственно). Продукт имеет матричную структуру пористости которая наследуется из структуры вспененного типа пены, брикета. Транспортные каналы образованы слившимися в процессе вспенивания шликера газовыми пузырьками. Наблюдается анизотропия пористости (рис.12) в направлении нормальном оси симметрии цилиндрической формы для вспенивания. В зависимости от соотношения объёмов системы до и после вспенивания, параметры пористости можно варьировать в широких пределах: $D_{El} = 250 \div 750 \text{ мкм}, D_{Can} = 10 \div 200 \text{ мкм}, S_{Surf} = 4 \div 15 \text{ мм}^{-1}.$

Рисунок 12 — Изображения сечений продуктов CBC системы Si+Al+Al₂O₃+N₂. Части a и δ — продольное и поперечное сечение продуктов CBC пористостью 58% соответственно, часть e — продольное сечение продукта CBC пористостью 75%.

выводы:

1. Разработаны методики металлографического пористых анализа структурами материалов co сложными пористости, основанные на одновременном учёте геометрических характеристик сечений пор и элементов скелета, на основе которых возможно количественно определять параметры мезо- и субмезоструктуры материала. Мезоструктуру характеризируют средний размер элемента скелета, размер поровых каналов и удельная поверхность субмезоструктуры пористости. Параметры находятся открытой С использованием статистического анализа, позволяющего реконструировать реальные характеристики замкнутых пор в объёме материала. Методики реализованы в компьютерной программе, автоматизирующей анализ продуктов CBC.

2. Установлено, что продукты, получаемые в процессе безгазового горения с участием расплавов, обладают следующими особенностями:

— Структура порового пространства градиентно меняется от центра к периферии образцов – центральные области характеризуются бо́льшими размерами элементов скелета, транспортных пор, а также долей закрытой пористости в сравнении с периферийными слоями продуктов;

— Элементы пористого скелета, замкнутые и открытые поры имеют вытянутую форму ($f_L \approx 0, 4 \div 0, 8$), ориентированную по нормали и/или параллельно основному направлению горения. Максимальное удлинение открытых пор реализуется при многоочаговом режиме горения. Наибольший размер элементов скелета и открытых пор возникает в режиме сцинтилляционного горения низкоплотных смесей;

— При минимальном уровне газовыделений основное количество замкнутых пор по размеру соответствует частицам исходных реагентов. С увеличением количества газовыделений средний размер замкнутых пор возрастает, при этом параметры анизотропии пор и элементов скелета для мезои субмезоуровня отличаются.

3. На примере системы (Ti+26мас.%Si)+Al₂O₃ показано влияние степени разбавления шихты инертным веществом, размера частиц исходных компонентов и относительной плотности образцов на структуру пористости продуктов CBC:

— Структуры каркасного типа с минимальной долей закрытой пористости образуются при реакции в низкоплотных порошковых смесях, а также в случае разбавления смесей инертным веществом;

— Для описания степени структурной конверсии предложен параметр η_S , характеризующий изменение величины удельной поверхности открытой пористости в процессе синтеза. Установлено, что формирование продуктов с минимальным значением η_S реализуется при разбавлении реакционной смеси инертным веществом;

— Размер поровых каналов продуктов синтеза определяется размером частиц компонентов, и снижается с ростом относительной плотности и степени разбавления исходной реакционной смеси.

4. Установлено, что поверхностные слои продуктов теплового взрыва низкоэкзотермичных смесей сохраняют структуру пористости исходного образца ($\eta_S \approx 10 \div 15\%$). Разработана методика прямого синтеза тепловым взрывом пористых Ni-Al материалов, использующихся в качестве несущей основы твёрдооксидных топливных элементов. Материалы характеризуется размером газотранспортных каналов $1 \div 2$ мкм, удельной поверхностью $200 \div 500$ мм⁻¹, газопроницаемостью $5 \cdot 10^{-6} \div 3 \cdot 10^{-4}$ моль/($m^2 \cdot c \cdot \Pi a$).

5. Установлено, что методом предварительного шликерного вспенивания реакционной шихты можно варьировать параметры поровой структуры

продуктов СВС. Подобран состав шихты и условия вспенивания для получения в процессе СВС-азотирования пористых сиалонов $Si_{6-Z}Al_ZO_ZN_{8-Z}$. Получены материалы с общей пористостью от 40 до 75%, размером элемента скелета $250 \div 750$ мкм, размером поровых каналов $10 \div 200$ мкм, удельной поверхностью $4 \div 15$ мм⁻¹.

ОСНОВНЫЕ ПОЛОЖЕНИЯ И РЕЗУЛЬТАТЫ ДИССЕРТАЦИОННОГО ИССЛЕДОВАНИЯ ИЗЛОЖЕНЫ В СЛЕДУЮЩИХ ПУБЛИКАЦИЯХ

Научные рецензируемые журналы, рекомендованные ВАК:

1. **Мазной А.С.**, Кирдяшкин А.И., Максимов Ю.М. О влиянии размеров частиц порошковых реагентов на морфологию пористости СВС материалов // Известия вузов. Физика. 2009. Т.52. №12/2. С.68-73.

2. **Мазной А.С.**, Кирдяшкин А.И., Максимов Ю.М. Методики стереометрического анализа морфологии пористых проницаемых материалов // Известия вузов. Порошковая металлургия и функциональные покрытия. 2011. № 3. С.44-50.

3. **Мазной А.С.**, Кирдяшкин А.И., Китлер В.Д. Пористая металлокерамика СВС для блочных каталитических систем // Известия вузов. Физика. 2011. Т.54. № 12/2. С.54-60.

Статьи в трудах международных симпозиумов:

4. **Maznoy A.S.**, Kirdyashkin A.I., Maksimov Yu.M., Kazazaev N.Yu. Prospects for synthesis of porous oxynitride ceramics by SHS // XI Symposium (International) on Self-Propagating High Temperature Synthesis. Anavyssos, Attica, Greece. Book of abstracts. 2011. P.98-100.

5. **Maznoy A.S.**, Kirdyashkin A.I., Maksimov Yu.M., Kazazaev N.Yu. Methods for determination of pore size distribution in the volume of porous materials // XI Symposium (International) on Self-Propagating High Temperature Synthesis.. Anavyssos, Attica, Greece. Book of abstracts. 2011. P.348-350.

Статьи и тезисы в сборниках трудов конференций:

6. **Мазной А.С.** Модернизация метода Салтыкова для анализа морфологии пористых материалов // Материалы конференции ВНКСФ-15. Кемерово: Ассоциация студентов-физиков и молодых учёных России. 2009. С.739-740.

7. Мазной А.С. Методики автоматизированного металлографического анализа пористых материалов // Материалы конференции ВНКСФ-15.

Кемерово: Ассоциация студентов-физиков и молодых учёных России. 2009. С.741-742.

8. **Мазной А.С.** Разработка методик анализа морфологии пористых материалов для систем автоматического металлографического анализа // Материалы V всероссийской конференции молодых учёных «Физика и химия высокоэнергетических систем» (г. Томск, 22-25 апреля 2009 г.). Томск: ТМЛ-Пресс. 2009. С.126-129.

9. **Мазной А.С.**, Кирдяшкин А.И., Максимов Ю.М. Влияние кинетики процесса самораспространяющегося высокотемпературного синтеза на закономерности формирования пористого продукта реакции // Тезисы докладов Международной конференции по физической мезомеханике, компьютерному конструированию и разработке новых материалов (г. Томск, 7-11 сентября 2009 г.). Томск: ИФПМ СО РАН. 2009. С.433-435.

10. **Мазной А.С.**, Кирдяшкин А.И. Влияние дисперсности исходных порошковых реагентов на морфологию конечного продукта CBC // Материалы научного семинара «Фундаментальные и прикладные проблемы самораспространяющегося высокотемпературного синтеза» (г. Томск, 29-30 сентября 2009 г.). Томск: Изд-во ИОА СО РАН. 2009. С.82-84.

11. **Мазной А.С.** О влиянии на морфологию пористого продукта СВ–синтеза исходных параметров шихты // Сборник материалов Международной школы конференции молодых ученых «Физика и химия наноматериалов» (г. Томск, 12-16 октября 2009 г.). Томск: Томский государственный университет. 2009. С.380-383.

12. Мазной А.С. Перспективы использования сырья Томской области для производства изделий из передовой пористой керамики методом СВС [Электронный ресурс] // Сборник научных трудов VII Международной конференции студентов и молодых учёных «Перспективы развития фундаментальных наук» (г. Томск, 20-23 апреля 2010 г.). С.325-328. URL: <u>http://science-persp.tpu.ru/Previous%20Materials/Konf_2010.pdf</u> (дата обращения: 25.05.2012).

13. **Маznoy A.S.** On the methods for studying porosity of SHS materials [Электронный ресурс] // Proceedings of the 16th International Scientific and Practical Conference of Students, Post-graduates and Young Scientists «Modern technique and technologies MTT' 2010» (Tomsk, Russia, April 12-16, 2010). P.55-57. URL: <u>http://portal.tpu.ru/tpu/files/eng-sbornik-2010.pdf</u> (дата обращения 25.05.2012).

14. **Maznoy A.S.** Prospects for resource-saving synthesis of advanced ceramic materials on the basis of Tomsk oblast raw materials [Электронный ресурс] // Proceedings of the 16th International Scientific and Practical Conference of Students, Post-graduates and Young Scientists «Modern technique and technologies MTT' 2010» (Tomsk, Russia, April 12-16, 2010). P.58-60. URL: <u>http://portal.tpu.ru/tpu/files/eng-sbornik-2010.pdf</u> (дата обращения 25.05.2012).

15. Мазной А.С. О влиянии на морфологию пористости СВС материала относительной плотности порошковой прессовки // Сборник материалов

Шестой всероссийской конференции молодых ученых «Физика и химия высокоэнергетических систем» (г. Томск, 14-17 апреля 2010 г.). Томск: Томский государственный университет. 2010. С.251-255.

16. Мазной А.С., Казазаев Н.Ю. Синтез пористой оксинитридной керамики высокотемпературного самораспространяющегося методом синтеза. Особенности отжига пористого предматериала [Электронный ресурс] // Сборник трудов Π Международной научно-практической конференции молодых ученых «Ресурсоэффективные технологии для будущих поколений» (Томск, 23-25 ноября 2010 г.). С.145-147. URL: http://ret.tpu.ru/Files/conf2010.pdf (дата обращения: 25.05.2012).

17. **Мазной А.С.**, Кирдяшкин А.И. Синтез пористой оксинитридной керамики методом самораспространяющегося высокотемпературного синтеза. Влияние на процесс синтеза температуры обжига предматериала // Материалы VII Всероссийской научной конференции «Фундаментальные и прикладные проблемы современной механики» (Томск, 12-14 апреля 2011 г.). Томск: Томский государственный университет. 2011. С.107-109.

18. **Maznoy A.S.**, Kazazaev N.Yu. A synthesis of porous oxinitride ceramics by self-propagating high-temperature synthesis. the influence of Al₂O₃ dillution rate on SHS parameters [Электронный ресурс] // Proceedings of the 17th International Scientific and Practical Conference of Students, Post-graduates and Young Scientists «Modern technique and technologies MTT' 2011» (Tomsk, Russia, April 18-22, 2011). P.71-73. URL: <u>http://portal.tpu.ru/tpu/files/eng-sbornik-2011.pdf</u> (дата обращения 25.05.2012).

19. **Мазной А.С.**, Кирдяшкин А.И., Китлер В.Д., Восмериков А.В., Барбашин Я.Е. Пористая металлокерамика СВС для блочных каталитических систем // Сборник трудов Всероссийской научной школы-конференции молодых ученых «Катализ: от науки к промышленности» (г. Томск, 21-24 ноября 2011 г.). Томск: Изд-во Томского политехнического университета. 2011. С.47-49.

A.C. Мазной. 20. А.Н.Ковальчук, И.В. Ионов, Интерметаллическое соединение Ni-Al как несущая основа для твердооксидных топливных [Электронный pecypc] // Сборник научных IX элементов трудов Международной конференции студентов и молодых ученых «Перспективы развития фундаментальных наук» (Томск, 24-27 апреля 2012 г.). С.129-131. http://science-persp.tpu.ru/Previous%20Materials/Konf 2012.pdf URL: (дата обращения 25.05.2012).