Vol. 14, Number 4, 2005

Mechanically Activated Reactive Sintering of Mg-Ni-Fe System Hydride

Itoko Saita and Tomohiro Akiyama

Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13 Nishi 8, Kita, Sapporo, Hokkaido, Japan

ABSTRACT

This paper examines reactive sintering of Mg₂FeH₆ and Mg₂Ni_{1-x}Fe_x hydrides combined with ball milling. This study aimed at improving the Mg₂FeH₆ productivity and examining the effect of the addition of nickel to the hydrogen storage properties of Mg₂FeH₆ hydride. Before sintering metallic hydrides, the raw materials of metallic powders were mechanically activated by a high-energy ball mill. As a result, the ball-milled 2Mg + Fe recorded as much as 5 mass% in hydrogen storage capacity during heat treatment, and the final product successfully indicated a high purity Mg₂FeH₆. Interestingly, the dehydrogenation enthalpies of the Mg₂Ni_{1-x}Fe_x hydrides were larger by 10% or more than Mg₂NiH₄ and Mg₂FeH₆, taken individually. This was collateral evidence that the mechanically activated reactive sintering of Mg₂FeH₆ and Mg₂Ni_{1-x}Fe_x hydrides produced a new structure of the Mg-Ni-Fe-H system due to the synergy effect.