Vol. 14, Number 4, 2005

Effects of Environmental Gas on Combustion Synthesis and Microstructure of Ni₃Ti-TiC_x composites

Douglas E. Burkes^{1,2}, John J. Moore^{1,2}, Hu Chun Yi³, Guglielmo Gottoli^{1,2}, and Reed A. Ayers²

 ¹Metallurgical and Materials Engineering Department, Colorado School of Mines, 1500 Illinoise St., Golden, CO 804011887
²Institute for Space Resources, Colorado School of Mines, Golden, CO
³Guigne International Ltd., St. John's, NL A1L 1C1, Canada

ABSTRACT

The synthesis of $Ni_3Ti-TiC_x$ composites in three environmental gases involving elemental nickel, titanium and carbon (graphite) reactants is examined. Two chemistries, each with a varying amount of refractory phase, were studied in inert argon and reactive nitrogen and carbon dioxide environments. The environmental gas that the reactants are synthesized in shows effects on the combustion reaction kinetics, burning velocity and the product microstructure. The thermal properties of the environmental gases affect reaction exothermicity and can also act as "trigger" reactions. The formation of additional TiN and TiO/TiO₂ phases were observed for reactions carried out The microstructure of the product contains a in the reactive environments. substoichiometric TiC phase that correspondingly results in formation of Ni₃Ti TiC_x particle size and distribution are controlled mainly by reaction intermetallic. combustion temperature and burning velocity.

Keywords: Combustion synthesis; porous material; metal matrix composites (MMC); ceramic matrix composites (CMC), environmental gas.