Thermal Imaging Studies of the SHS Preparation of MgFe₂O₄

Hayley Spiers¹, Quentin Pankhurst¹, Ivan Parkin², Daren Caruana², and Meredith Kratzer²

ABSTRACT

Rapid capture thermal images have been recorded for the self-propagating high-temperature synthesis (SHS) preparation of MgFe₂O₄. As the SHS wave moved through the bulk of a prepared pellet consisting of a mixture of Fe, Fe₂O₃, MgO, and NaClO₄, images were captured in real time. Reaction temperatures in excess of 1265°C were observed, and a propagation wave with Gaussian-like isothermal properties was observed to move through the bulk of the pellet. Surface heat islands were also observed, probably resulting from inhomogeneities in the green mixture.

¹Department of Physics and Astronomy, University College London WC1E 6BT, UK

²Department of Chemistry, University College London WC1H OAJ, UK