Influence of the Reduction Agents on the Microstructure and Tetragonality of BaTiO₃ Powder Prepared by SHS

J.H. Lee, H.H. Nersisyan and C.W. Won

Korea Atomic Energy Research Institute (KAERI) 150 Duckjin-Dong, Yuseong, Dajeon, 305-353, Korea

Rapidly Solidified Materials Research Center (RASOM), Chungnam National University,

220 Gung-Dong, Yuseong, Daejeon, 305-764, Korea

The combustion process has been applied to synthesize high tetragonality barium titanate powders in the submicron range from the BaO_2 -TiO_2-reduction agent mixture. Urea- $CO(NH_2)_2$, hexamethylenetetramine- $C_6H_{12}N_4$) and titanium hydride-TiH_2 were used as reduction agents. The evolution of the combustion process and temperature distribution in the combustion wave were studied using on-line thermocouple techniques. Phase transformation, crystallite size and degree of tetragonality of the as-recieved $BaTiO_3$ powders were investigated as a function of the combustion temperature and the type of reduction agent using the X-ray diffraction method, and particle size and morphology were studied using scanning electron microscopy. When combustion temperature increased, $BaTiO_3$ transformed from the cubic to the tetragonal phase. High purity unagglomareted tetragonal $BaTiO_3$ with 0.5-1.0 µm particle size was obtained at the presence of molten NaCl using TiH₂ as a reduction agent.