SH-Synthesis of BaMgAl₁₀O₁₇:Eu²⁺ Blue- Emitting Phosphor. Influence of Additives on the Emission Characteristics

H.H. Nersisyan, J.H. Lee, J.E. Lee, K.B. Kim, and C.W. Won

Rapidly Solidified Materials Research Center (RASOM), Chungnam National University, 220 Gung-Dong, Yuseong, Daejeon, 305-764, Korea

Korea Atomic Energy Research Institute (KAERI) 150 Duckjin-Dong, Yuseong, Dajeon, 305-353, Korea

Electronics and Telecommunications Research Institute (ETRI) 161 Gajeong-Dong, Yuseong-Gu, Daejeon, 305-350, Korea

BaMgAl₁₀O₁₇:Eu²⁺ was prepared through a solid-state combustion reaction from the mixture of Ba(NO₃)₂, MgO, Al, Al₂O₃ and Eu(OH)₃. It was shown that the leading stage of combustion corresponds to the reaction between Ba(NO₃)₂ and Al. From the XANES data, it was found that the divalent and trivalent europium coexisted in the SHS sample and trivalent europium was completely removed by decreasing the total oxygen content in the system. The XRD and PL spectra results indicate that a combustion temperature of about 2000-2100 K is the most favorable for BaMgAl₁₀O₁₇ aluminate formation. Different chemical additives such as NaCl, SiO₂, B₂O₃ and Na₂SiO₃ were introduced during the combustion for to improve the emission properties of BaMgAl₁₀O₁₇:Eu²⁺. The highest intensity was obtained in SiO₂ containing sample and the emission intensity of sample was increased up to the level of a commercial one.