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Aluminium nitride

Phase transition to rocksalt structure

Wurtzite (w), Zincblende (zb) and Rocksalt-Structure (rs)

rs-AlN discovered 1982 with shock wave experiments (PT =21± 1 GPa, ∆V=20 %) KONDO

ET AL. (1982)

first synthesis and recover of rs-AlN with MAP VOLLSTÄDT ET AL. (1990) (quenched from P=16.5 GPa
and T=1400 to 1600 ◦C)

sintered w-AlN/rs-AlN high hardness (≤ 4500 HV), high electrical resistance and thermal
conductivity of 250 to 600 W/m K VOLLSTÄDT AND RECHT (1991)

(a) wurtzite (b) zincblende (c) rocksalt
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Aluminium nitride

Phase transition to rocksalt structure

Wurtzite (w), Zincblende (zb) and Rocksalt-Structure (rs)

rs-AlN discovered 1982 with shock wave experiments (PT =21± 1 GPa, ∆V=20 %) KONDO

ET AL. (1982)

first synthesis and recover of rs-AlN with MAP VOLLSTÄDT ET AL. (1990) (quenched from P=16.5 GPa
and T=1400 to 1600 ◦C)

sintered w-AlN/rs-AlN high hardness (≤ 4500 HV), high electrical resistance and thermal
conductivity of 250 to 600 W/m K VOLLSTÄDT AND RECHT (1991)

→ high potential of rs-AlN as hard material and microelectronical substrate

→ no synthesis with shock waves SEKINE AND KOBAYASHI (2003)

→ almost no knowledge about properties of rs-AlN: thermal and chemical stability, mechanical
properties
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Shock Synthesis of rs-AlN
Experimental Set-up
Parameters and Result of Synthesis
Structural Characterisation

Properties of rs-AlN
Thermal Stability
Chemical Stability

Conclusion and Outlook
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Shock wave synthesis

FHP shock wave equipment

flyer-plate method

active plane wave generator

high explosives up to 8.3 km/s

different materials
succesful synthesis of new materials, e.g.

- γ-Si3N4SCHLOTHAUER ET AL. (2012)

- rs-AlN KELLER ET AL. (2011)

Shock Wave Parameters

standard: pressures up to 100 GPa, several
thousand K

impedance and reflection method for
different p-T-paths

plane wave 
generator

detonator

high explosive (HE)

flyer plate (steel)
spacer (plastic)

recovery container 
(Armco)

sample powder

container holder
(steel)
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Synthesis and Analysis of rs-AlN

Synthesis Conditions

all sample preparations under nitrogen (glovebox system)

reflection method, pressure 15 to 43 GPa

w-AlN as starting powder (no additional pressure medium) with varying porosity k
(ρsolid/ρporous) 1.5 to 2.5, sample height d 0.5 to 2.0 mm

nanopowder 20 nm, submicronpowder 0.8 to 1.8 µm

(a) Deformed
container holder

(b) Annealing color on
shocked sample
container

(c) Deformed flyer plate
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Synthesis and Analysis of rs-AlN

Synthesis Conditions

all sample preparations under nitrogen (glovebox system)

reflection method, pressure 15 to 43 GPa

w-AlN as starting powder (no additional pressure medium) with varying porosity k
(ρsolid/ρporous) 1.5 to 2.5, sample height d 0.5 to 2.0 mm

nanopowder 20 nm, submicronpowder 0.8 to 1.8 µm

Results

max. yield @ 23 GPa and k = 2.1

sensitiv to conditions caused by thermal
reconversion rs→w

for lower sample heights (0.5 mm) better results
(less shock attenuation)
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Grain size effects

Nanopowder vs. Submicron-powder

with submicron-powder at same pressure and experimental set-up no rs-AlN formed
(recovered)

for AlN transition pressure decrease with decreasing grain size WANG ET AL. (2004)

lower PT enable recover of rs-AlN (less energy introduced causing less temperature rise)

other possible effects: more nuclei, reactivity of nanopowder
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Powder X-ray diffraction

Phase Analysis

mixture of rs-AlN (at the moment up to 50 %),
w-AlN, corundum, γ-AlON

high oxygen content caused by bad
commercial nano-AlN powder-quality→
Al2O3 and γ-AlON in reaction product

up to 2 to 5 % chloride in starting powder

XRD data of AlN
w-AlN: 15 to 30 nm

a = 3.1073± 0.0002 Å
c = 4.9806± 0.0005 Å

rs-AlN: 10 to 25 nm
a = 4.0464± 0.0027 Å
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Nuclear Magnetic Resonance Spectroscopy (NMR)
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3MQ-MAS NMR spectra of sample AN33 with 48 % rs-AlN
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Nuclear Magnetic Resonance Spectroscopy (NMR)

Results of 2D NMR measurement

corrected peak positions: 2 ppm (AlN6), 20 ppm
(AlO6) and 118 ppm (AlN4)

quadrupol splitting of AlO6-group

peak broadening→ poor crystallinity
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Thermal stability
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Heat stability in air and vacuum

weight loss up to 500 ◦C caused by
degassing and decomposition of
hydroxides

stepwise mass increase + positive heat
flow indicates oxidation

rs-AlN oxydised at T > 600 ◦C

mass decrease of 2.5 % caused by
outgassing of volatiles and decompositon

reconversion of rs-AlN→w-AlN at
1100 to 1300 ◦C

increase in γ-AlON and corundum
(structural bonded oxygen in rs-AlN?)
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Thermal stability
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Chemical Stability

Chemical resistance against acids and bases

different chemicals: water, NaOH, HCl, H3PO4, H2SO4, HNO3 and nitrohydrochloric acid

500 mg sample in 4 ml chemical for 1 h

w-AlN reaction to AlO(OH), γ-AlON slightly dissolved

corundum and rs-AlN extreme stable
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Conclusion and Outlook

Just to sum up...
We have shown that rs-AlN...

1. ... can be shock synthesised from AlN nanopowder with a maximum yield of 50 % at 23 GPa
and a porosity of 2.1

2. ... is sensitiv to shock conditions caused by thermal reconversion to w-AlN

3. ... shows a symmetrical peak in 27Al-MAS-NMR spectra at 2 ppm

4. ... reconverts to w-AlN at 1100 ◦C

5. ... reacts with oxygen (like w-AlN) at T >600 ◦C

6. ... is chemical stable against acids and bases

Further things to come...

improved shock wave synthesis for higher amounts and yields (precursor chemistry, cooling
medium, cylindrical charge)

HR-TEM analysis

ND for further structural characterisation, esp. oxygen in structure

production of dense sinter body for further characterisation (mechanical, electrical, thermal)
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Why Shock Waves?

Transaction during shock consolidation

compaction and filling of voids - just in the width of the shock front→ possiblity to compact
powders in bulk

shattering and heavy deformation of grains

raising dislocation density

plastic deformation→ strong heating

local softening up to melting

phase transition 10−11 to 10−12 s

specific effects (particle surface melting, jetting, high local deformation)

different thermodynamical route compared to static→
- large increase of internal energy at shock wave compaction
- heterogenous temperature distribution (before and after shock front)
- melting of just a fraction, high cooling rates (often resulting in amorphous

phases)
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Why shock waves?

Comparison of static and dynamic processes

different timescale→ shock processes in order of microseconds

compaction just in the width of the shock front→ possiblity to compact powders in bulk
(high volume)

particles accelerated to hundreds of meter per second→ particle surface melting, jetting,
high local deformation

different thermodynamical routes→
- large increase of internal energy at shock wave compaction
- heterogenous temperature distribution (before and after shock front)
- melting of just a fraction, high cooling rates (often resulting in amorphous

phases)
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Sample geometry

Impedance vs. Reflection method

impedance method reflection method
precursor mixed with pressure medium pure precursor
medium to high pressure high to ultrahigh pressure
high temperature medium temperature
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Fig. 1: Sample geometry
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Sample geometry

Impedance vs. Reflection method

impedance method reflection method
precursor mixed with pressure medium pure precursor
medium to high pressure high to ultrahigh pressure
high temperature medium temperature

waste heat
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Pressure Determination

Flyer plate speed and sample pressure
The speed of the flyer plate can be estimate with
the Gurney velocity

√
2E [DECARLI AND MEYERS (1981) ]:

vfp =
√

2E

√√√√( 3

1 + 5
(
m
c

)
+ 4
(
m
c

)2

)
(1)

The pressure can be calculated from the sample
impedance Z:

P = ρ0UPUS = ZUP (2)

with:

US = A + BUP (3)

Gurney velocities
Tab. 1: Gurney velocities for some explosives after DOBRATZ

AND CRAWFORD (1985)

explosive density

[g/cm3]

vD
[km/s]

√
2E

[km/s]

Comp. A-3 1,59 8,14 2,63
Comp. B 1,72 7,92 2,71
Comp. C-3 1,60 7,63 2,68
Cyclotol 75/25 1,75 8,25 2,79
H-6 1,76 7,90 2,58
HMX 1,84 8,83 2,80
LX-14 1,89 9,11 2,97
Octol 75/25 1,81 8,48 2,80
PBX 9404 1,84 8,80 2,90
PBX 9502 1,89 7,67 2,38
PETN 1,76 8,26 2,93
RDX 1,77 8,70 2,83
Tacot 1,61 6,53 2,12
Tetryl 1,62 7,57 2,50
TNT 1,63 6,86 2,44
Tritonal 80/20 1,72 6,70 2,32
NSP-711a 1,45 7,50 2,36
NSH-711a 1,60 8,30 2,64

a verwendete Sprengstoffe,
√

2E von BAM bestimmt
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Freiberg High-Pressure Research Centre (FHP)

The essential aim of the Freiberg High-Pressure Research Centre (FHP) is the application of high
pressures for the material development and synthesis, the optimisation and comprehensive
characterisation and understanding of the materials properties as well as to convey the gain of
knowledge in saleable products.

Theory Assembly Examination Testing

TP 1
Prediction of new
crystal structures

TP 5
Development and
testing of new
drilling tools

TP 2
New hard
materials and high
pressure phases

TP 7
Structure -
properties
correlations

TP 8
High pressure
compression of
new materials
through SPS

TP 4
Micromechanical
simulation of
fracture
characteristics

TP 3
Shock wave
synthesis

TP 6
High-speed
material behavior
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